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INTRODUCTION

Consider the nonlinear integral equation
t∫

0

K(t, s)
(
x(s) + g

(
slx(s), s

))
ds = f(t), (1)

where the kernel K, as well as g and f , is an analytic function in a neighborhood of zero; moreover,

K(t, s) =
n∑

i=0

Kn
n−it

n−isi +O
(
(|t|+ |s|)n+1

)
, Kn

n−i �= 0, i = 0, 1, . . . , n, n < l.

We construct generalized solutions with singular part supported at a point [1] in the form

x(t) = c0δ(t) + c1δ
(1)(t) + · · · + cnδ

(n)(t) + u(t), (2)

where δ(t) is the Dirac function and u(t) is a regular function. Generalized solutions of linear
Volterra integral equations of the first kind were considered in [2–6]. A number of main results
of these papers follow from the present paper. Unlike classical solutions (see the bibliography
in [8–10] etc.), generalized solutions of nonlinear Volterra equations have not been studied yet.

DETERMINATION OF THE SINGULAR COMPONENT

The set of all infinitely differentiable compactly supported functions with supports in the neigh-
borhood (−�, �) is denoted by D(−�,�). The set of linear continuous functionals defined on D(−�,�)

is denoted by D′
(−�,�), and the subset of elements of the form (2) with an nth-order singularity sup-

ported at zero is denoted by D′
n(−�,�). Thus the solution (2) of Eq. (1) is sought in the class D′

n(−�,�)

and should satisfy Eq. (1) in the sense of Sobolev–Schwartz distributions [1, pp. 49–51]. Note that
the product tlx = tlu(t) is a regular function for n < l and for all x ∈ D′

n(−�,�), which provides a
solution of the problem of nonlinear operations with such distributions for Eq. (1) with l > n.

Since the identities
tk−iΘ ∗ siδ(j)(s) = (−1)jj!tk−jδij

are valid in the space D′ for i, j = 0, 1, . . . , n, k ≥ n, where Θ is the Heaviside function and δij is
the Kronecker delta, we have the relation

t∫
0

∞∑
k=n

k∑
i=0

Kk
k−it

k−isi
(
c0δ(s) + · · · + cnδ

(n)(s)
)
ds =

n∑
j=0

(−1)jj!
∞∑

k=n

Kk
k−jt

k−jcj.
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Note that
n∑

j=0

(−1)j ∂jK(t, s)
∂sj

∣∣∣∣
s=0

=
n∑

j=0

(−1)jj!
∞∑

k=n

Kk
k−jt

k−j .

Therefore, an element x ∈ D′
n(−�,�) can be a solution of Eq. (1) only if the regular component in

the representation (2) satisfies the equation

t∫
0

K(t, s)
(
u(s) + g

(
slu(s), s

))
ds = r (t, c0, . . . , cn) , (3)

where

r (t, c0, . . . , cn) = f(t)−
n∑

j=0

(−1)j ∂
jK(t, 0)
∂sj

cj.

We find the constants c0, . . . , cn from the system of the linear algebraic equations

r
(i)
t (0, c0, . . . , cn) = 0, i = 0, . . . , n, (4)

with lower triangular matrix with diagonal entries Kn
0 ,K

n
1 , . . . ,K

n
n .

If these numbers are nonzero, then the constants cn, . . . , c0 can be found successively and
uniquely. If some of the diagonal entries are zero and the vector

{
f(0), f ′(0), . . . , f (n)(0)

}′
sat-

isfies the solvability condition, then part of the constants on the right-hand side in Eq. (3) can
remain arbitrary.

Remark. If f (i)(0) = 0, Kn
i = 0, i = 0, 1, . . . , k − 1, and Kn

i �= 0 for i = k, . . . , n, then,
by setting ck = · · · = cn = 0, one can uniquely find the constants c0, . . . , ck−1 from system (4).

DETERMINATION OF THE REGULAR COMPONENT

To construct the regular function u(t), we solve Eq. (3) for the found values of c0, . . . , cn by
combining the method of indeterminate coefficients with the successive approximation method.

For brevity, we introduce the notation

Φ(u, t) :=

t∫
0

K(t, s)
(
u(s) + g

(
slu(s), s

))
ds − r(t, c) = 0. (5)

Suppose that the homogeneous equation

t∫
0

n∑
i=0

Kn
n−it

n−isix(s)ds = 0 (6)

has only the trivial solution. This is the case if
∑n

i=0 K
n
n−i(i + j)−1 �= 0 for j = 1, 2, . . . Then for

each positive integer N , there exist constants ui such that∣∣Φ (
u0 + u1t+ · · ·+ uN tN , t

)∣∣ = O
(
|t|n+N+1

)
. (7)

Since the homogeneous equation (6) has only the trivial solution, we have

t∫
0

n∑
i=0

Kn
n−it

n−isi+jds �= 0
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for j = 0, 1, 2, . . ., and the coefficients ui are uniquely determined by the method of indeterminate
coefficients after the substitution of the polynomial

u0(t) = u0 + u1t+ · · ·+ uN tN

into Eq. (5).
Next, we substitute the function

u(t) = u0(t) + tNv(t) (8)

into Eq. (5) and collect terms containing the powers ti, i = n, n+1, · · · , n+N , taking into account
relation (4) and the definition of the polynomial u0(t). Then we differentiate the resulting relation
with respect to t and find the function v by the successive approximation method from the integral
equation

v = F (v, t). (9)
Here

F (v, t) =
1

K(t, t)tN

{
−K(t, t)

(
u0(t) + g

(
tlu0(t) + tl+Nv(t), t

))

−
t∫

0

K ′
t(t, s)

(
u0(s) + sNv(s) + g

(
slu0(s) + sl+Nv(s), s

))
ds+ r′t(t, c)

}
.

Suppose that
n∑

i=0

Kn
n−i = a �= 0.

Let us show that the operator F satisfies the assumptions of the contraction mapping principle in
the ball ‖x‖ ≤ r of the space C[−�,�] for sufficiently large N . Indeed,∣∣g (

sl
(
u0(s) + sNv1(s)

)
, s

)
− g

(
sl

(
u0(s) + sNv2(s)

)
, s

)∣∣ ≤ |s|l+NC1 |v1 − v2|

for all v1 and v2 in the ball S(0, r) ⊂ C[−�,�].
Further, since

|K ′
t(t, s)| ≤ C2(|t|+ |s|)n−1,

we have ∣∣∣∣∣∣
1

tn+N

t∫
0

K ′
t(t, s)s

Nds

∣∣∣∣∣∣ ≤
2n−1C2

N + 1
.

By virtue of these estimates, there exists a constant c such that

|F (v1, t)− F (v2, t)| ≤
c

N + 1
‖v1 − v2‖ .

We fix a q < 1 and take N > c/q− 1. Then F is a contraction operator with exponent q in the ball
‖v‖ ≤ r of the space C[−�,�]. Since, by (7), |F (0, t)| = O(|t|), it follows that there exists a �̃ ∈ (0, �]
such that max|t|≤�̃ |F (0, t)| ≤ (1 − q)r. Consequently, the contraction operator F maps the ball
‖v‖ ≤ r of the space C[−�̃,�̃] into itself. This implies the following assertion.

Theorem 1. Let l > n, and let
n∑

i=0

Kn
n−i

1
i+ j

�= 0, j = 1, 2, . . . , Kn
n−i �= 0, i = 0, 1, . . . , n,

n∑
i=0

Kn
n−i �= 0.

Then Eq. (1) has a unique solution (2), (8) in the class D′
n (−�̃, �̃) , where the constants c0, . . . , cn

are found from Eq. (4), the coefficients u0, . . . , uN are computed by the method of indeterminate
coefficients from Eq. (5), and the continuous function v(t) is constructed by the successive approx-
imation method from Eq. (9).
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Remark 1. In the analytic case, the entire regular part u(t) of the solution (2) is an analytic
function in a neighborhood of zero, and its Taylor coefficients can be found by the method of
indeterminate coefficients from Eq. (5).

Remark 2. Instead of the analyticity of K, g, and f , in Theorem 1 one could only require that
these functions are sufficiently smooth.

Remark 3. If f (i)(0) = 0, i = 0, 1, . . . , n, then all ci = 0 in the solution (2), and this solution
is classical.

Remark 4. If, under the assumptions of Theorem 1, some of the elements Kn
i , i = 0, . . . , n,

are zero and, in addition, system (4) is solvable, then the solution (2), (8) depends on k arbitrary
constants, where k = n+ 1− r and r is the rank of the matrix of the linear system (4).

Theorem 1 can be strengthened as follows.

Theorem 2. Under the assumptions of Theorem 1, let
∑n

i=0 K
n
n−i = 0 and moreover, let

∂iK(t, s)
∂ti

∣∣∣∣
s=t

= 0, i = 0, 1, . . . , p− 1,
∂pK(t, s)

∂tp

∣∣∣∣
s=t

= O
(
tn−p

)
, p ≤ n.

Then the assertion of Theorem 1 remains valid.

The proof of Theorem 2 can be performed in a similar way. We only note that, by the Taylor
formula, K(t, s) = (t− s)pQ(t, s) under the assumptions of Theorem 2, where |Q(t, t)| = O (|t|n−p).
Therefore, for the construction of the equation for the function v, one should differentiate Eq. (3)
p+ 1 times and set

F (v, t) =
1

K
(p)
t (t, t)tN

{
−K(p)(t, t)

(
u0(t) + g

(
tlu0(t) + tl+Nv(t), t

))

−
t∫

0

K
(p+1)
t (t, s)

(
u0(s) + sNv(s) + g

(
slu0(s) + sl+Nv(s), s

))
ds+ r

(p+1)
t (t, c)

}

in the corresponding equation of the form (9).
Example. Consider the equation

t∫
0

(
t2 + ts− 2s2

) (
x(s) + s5x2(s)

)
ds = 1 + t+ t2 + t3.

Here the assumptions of Theorem 2 are valid for n = 2, l = 5/2, and p = 1. In the class D′,
we have the solution

x(t) = δ(t)− δ(1)(t)− 1
4
δ(2)(t) +

−1 +
√
1 + t5 × 24/5
2t5

,

whose singular part is determined by (4) and whose regular part has been found from the equation

t∫
0

(
t2 + ts− 2s2

) (
u(s) + s5u2(s)

)
ds = t3. (10)

Equation (10) has the analytic solution

u(t) =
−1 +

√
1 + t5 × 24/5
2t5

.
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By Remark 1, the Taylor coefficients of the solution at the point t = 0 can be computed by the
method of indeterminate coefficients. Note that, along with this solution, Eq. (10) has the solution

u2(t) =
−1−

√
1 + t5 × 24/5
2t5

for which the point t = 0 is a fifth-order pole.
In the general case, Eq. (1) can have several branching solutions. Such solutions can be con-

structed with the use of the results of the present paper in combination with well-known methods
of branching theory [13, pp. 34–60].

Remark. By virtue of the results in [4, 11] on distributions in Banach spaces, Theorems 1 and 2
can be generalized to systems and integro-operator equations of the form (1) in which K is a linear
kernel and g is a nonlinear mapping of Banach spaces. These results can be used in the development
of the theory as well as in applications of operator-differential equations with Fredholm operator
in the leading part [11, 12] to problems of nonlinear dynamics and identification [7, 8] and other
problems that can be reduced to Volterra integral equations of the first kind.
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