О роли жордановых наборов в теории вырожденных дифференциально-операторных уравнений

Н.А.Сидоров, О.А.РомановаИркутский государственный университет

Abstract

Рассмотрены методы редукции дифференциально-операторных уравнений с фредгольмовым оператором при главной части к регулярным задачам. Установлена связь между выбором начальных условий и жордановой структурой операторных коэффициентов уравнения. Доказана теорема существования и единственности задачи Коши. Построены левый и правый регуляризаторы для сингулярного дифференциально-операторного уравнения.

1 Введение

Рассмотрим уравнение

$$L(D)u(x) = f(x), (1)$$

где $L(D) = \sum_{|\alpha| \leq l} B_{\alpha} D^{\alpha}$, x = (t, x')— точка пространства R^{m+1} , $x' = (x_1, \ldots, x_m)$, $D = (D_t, D_{x_1}, \ldots, D_{x_m})$, $\alpha = (\alpha_0, \ldots, \alpha_m)$, $|\alpha| = \alpha_0 + \alpha_1 + \cdots + \alpha_m$, α_i — целые неотрицательные индексы , $D^{\alpha} = \frac{\partial^{\alpha}}{\partial t^{\alpha_0} \ldots \partial x_m^{\alpha_m}}$, $B_{\alpha} : D_{\alpha} \subset E_1 \to E_2$ — замкнутые линейные операторы с плотными областями определения в $E_1, x \in \Omega$, где $\Omega \subset R^{m+1}$, $|t| \leq T$, E_1, E_2 — банаховы пространства, и $f: \Omega \to E_2$ — аналитическая функция по x' и достаточно гладкая по t. Задача Коши для уравнения (1), когда $E_1 = E_2 = R^n$ и матрица $B = B_{l0...0}$ не вырождена, достаточно хорошо изучена в работах И.Г.Петровского [2]. В случае, когда оператор B необратим, теория постановки начальных и граничных задач (1) не достаточно развита даже в конечномерном случае.

Пусть $B = B_{l0...0}$ - фредгольмов оператор, $D(B) \subseteq D(B_{\alpha}) \ \forall \alpha$ и dim $N(B) = n \ge 1$, тогда задача Коши с условиями $D_t^i u|_{t=0} = g_i(x'), \quad i = 0, \ldots, l-1$ для уравнения (1) не имеет классического решения для произвольной правой части f(x). Предположим, что среди коэффициентов B_{α} есть оператор $A = B_{l_10...0}, \ l_1 < l$, относительно

которого B имеет полный A- жорданов набор [1]. В этом случае показано, что естественные постановки начальных задач для уравнения (1) можно получить, раскладывая пространство E_1 на прямую сумму подпространств в соответствии с жордановой структурой операторных коэффициентов B_{α} и задавая условия отдельно для каждой проекции искомого решения. При разумном выборе прямых разложений, проекции решения должны определяться из регулярных задач.

При исследовании уравнения (1) проведена редукция сингулярного уравнения к регулярным задачам. Получены достаточные условия существования единственного классического решения уравнения (1) с начальными условиями

$$D_t^i u|_{t=0} = g_i(x'), \quad i = 0, 1, \dots, l_1 - 1,$$
 (2)

$$(I-P)D_t^i u|_{t=0} = g_i(x'), \quad i = l_1, \dots, l-1,$$
 (3)

где $g_i(x')$ – аналитические функции со значениями в E_1 , $Pg_i(x')=0$, $i=l_1,\ldots,l-1$, P- проектор, определяемый ниже формулой (4).

Построены левый и правый регуляризаторы для сингулярного дифференциальнооператорного уравнения.

2 Выбор проекторов и редукция начальной задачи к форме Ковалевской

Предположим, что выполняется следующее условие:

Условие 1. Фредгольмов оператор B имеет полный A - жорданов набор ϕ_i^j , B^* имеет полный A^* - жорданов набор ψ_i^j , $i=\overline{1,n}$, $j=\overline{1,p_i}$, и системы $\gamma_i^{(j)}\equiv A^*\psi_i^{(p_i+1-j)}, z_i^{(j)}\equiv A\phi_i^{(p_i+1-j)}$, где $i=\overline{1,n}, j=\overline{1,p_i}$, соответственно биортогональны [1] (здесь p_i -длины жордановых цепочек оператора B). Напомним, что условие 1 выполнено, если оператор $B+\lambda A$ непрерывно обратим при $0<|\lambda|<\epsilon$ [1].

Введем проекторы

$$P = \sum_{i=1}^{n} \sum_{j=1}^{p_i} \langle ., \gamma_i^{(j)} \rangle \phi_i^{(j)} \equiv (\langle ., \Upsilon \rangle \Phi), \tag{4}$$

$$Q = \sum_{i=1}^{n} \sum_{j=1}^{p_i} \langle ., \psi_i^{(j)} \rangle z_i^{(j)} \equiv (\langle ., \Psi \rangle Z), \tag{5}$$

порождающие прямые разложения пространств E_1, E_2

$$E_1 = E_{1k} \oplus E_{1\infty-k}, E_2 = E_{2k} \oplus E_{2\infty-k},$$

где $k=p_1+\cdots+p_n$ - корневое число.

Тогда любое решение уравнения (1) может быть представлено в следующем виде

$$u(x) = \Gamma v(x) + (C(x), \Phi), \tag{6}$$

где $\Gamma = (B + \sum_{i=1}^{n} < ., \gamma_i^{(1)} > z_i^{(1)})^{-1}$ - ограниченный оператор [1], $v \in E_{2\infty-k}$, $C(x) = (C_{11}(x), \ldots, C_{1p_1}(x), \ldots, C_{n1}(x), \ldots, C_{np_n}(x))^T$,

 $\Phi = (\phi_1^{(1)}, \dots, \phi_1^{(p_1)}, \dots, \phi_n^{(1)}, \dots, \phi_n^{(p_n)})^T$, где T обозначает транспонирование.

Неизвестные функции $v(x): \Omega \subset R^{m+1} \to E_{2\infty-k}$ и $C(x): \Omega \subset R^{m+1} \to R^k$ на основании начальных условий (2),(3), удовлетворяют следующим условиям:

$$D_t^i v|_{t=0} = \begin{cases} B(I-P)g_i(x'), & i = 0, \dots, l_1 - 1, \\ Bg_i(x'), & i = l_1, \dots, l - 1, \end{cases}$$
 (7)

$$D_t^i C|_{t=0} = \beta_i(x'), \ i = 0, \dots, l_1 - 1.$$
 (8)

Здесь $\beta_i(x')$ - коэффициенты проекций $Pg_i(x'), i = 0, ..., l_1 - 1.$

Предположим, что выполняется

Условие 2. Операторные коэффициенты B_{α} в уравнении (1) удовлетворяют на $D(B_{\alpha})$ по крайней мере одному из пяти условий:

- 1. $B_{\alpha}P=QB_{\alpha}$, то есть $B_{\alpha}\left(P,Q\right)$ коммутируют, кратко, $\alpha\in q_{0};$
- 2. $B_{\alpha}P=0$, кратко $\alpha \in q_1$;
- 3. $QB_{\alpha}=0$, кратко $\alpha \in q_2$;
- 4. $(I-Q)B_{\alpha}=0$, кратко $\alpha \in q_3$;
- 5. $B_{\alpha}(I-P) = 0$, кратко $\alpha \in q_4$;

Введем обозначения $(\Phi, C) = \sum_{i=1}^n \sum_{j=1}^{p_i} \phi_i^{(j)} C_i^{(j)}$, где $C \in \mathbb{R}^k$. Тогда $< B_{\alpha}(\Phi, C), \Psi > = \mathcal{A}^T{}_{\alpha}C$, где $\Psi = (\psi_1^{(1)}, \dots, \psi_1^{(p_1)}, \dots, \psi_n^{(1)}, \dots, \psi_n^{(p_n)})^T$.

Согласно условию 1 и результатам [2] $\alpha \in q_0$ тогда и только тогда, когда

$$B_{\alpha}^* \Psi = \mathcal{A}^{\mathcal{T}}_{\alpha} \Upsilon, \ B_{\alpha} \Phi = \mathcal{A}_{\alpha} Z.$$

Операторы $B \equiv B_{l0...0}$, $A \equiv B_{l_10...0}$ принадлежат множеству q_0 , более того матрицы (P,Q) - коммутирования являются симметричными клеточно-диагональными

$$\mathcal{A}_{B} = diag(B_1, \dots, B_n), \mathcal{A}_{A} = (A_1, \dots, A_n), \tag{9}$$

где

$$B_i = \begin{bmatrix} 0...0 \\ 0...1 \\ \\ 01...0 \end{bmatrix},$$

$$A_i = \begin{bmatrix} 0...1 \\ \\ 1...0 \end{bmatrix}, i = \overline{1, n},$$

если $p_i \ge 2$ и

$$\mathcal{A}_{\mathbf{B}} = 0, \quad \mathcal{A}_{\mathbf{A}} = I, \tag{10}$$

если $p_i = 1$.

Нетрудно проверить, что для проекторов P,Q, которые определяются формулами (4),(5), выполняется равенство $\Gamma Q = P\Gamma$. Пространства E_{2k} , $E_{2\infty-k}$ являются инвариантными подпространствами оператора Γ . Так как оператор Γ ограничен, $D(B) \subseteq D(B_{\alpha})$ и $\overline{D(B_{\alpha})} = E_1$, то $B_{\alpha}\Gamma \in L(E_1 \to E_2)$.

Таким образом, подставляя (6) в уравнение (1) и затем проектируя на подпространство $E_{2\infty-k}$, мы получим уравнение

$$D_t^l v + (I - Q) \sum_{|\alpha| \le l, \ \alpha \in (q_0, q_1, q_2) \setminus (l0...0)} B_{\alpha} \Gamma D^{\alpha} v = (I - Q) (f - \sum_{|\alpha| \le l, \alpha \in (q_2, q_4)} B_{\alpha} (D^{\alpha} C, \Phi))$$
(11)

с условием (7).

Для того, чтобы определить вектор-функцию C(x), мы проектируем уравнение (1), где u определяется формулой (6), на E_{2k} , в результате получим систему

$$\sum_{|\alpha| \le l, \alpha \in (q_0, q_3, q_4)} M_{\alpha} D^{\alpha} C = b(x, v)$$
(12)

с начальным условием (8). В системе (12)

$$M_{\alpha} = \| \langle B_{\alpha} \phi_l^s, \psi_i^{(j)} \rangle \|, \quad i, l = 1, \dots, n, \quad j = 1, \dots, p_i, s = 1, \dots, p_l, -1 \rangle$$

матрицы размерности $k \times k$, b(x, v) – вектор коэффициентов проекции

$$Q(f - \sum_{|\alpha| \le l, \alpha \in (q_1, q_3)} B_{\alpha} \Gamma D^{\alpha} v).$$

Таким образом начальная задача (1), (2), (3) редуцируется к задачам (11), (7) и (12), (8).

Напомним, что если $\alpha \in q_0$, то $M_{\alpha} = \mathcal{A}_{\alpha}^T$. При k=n из формул (10) следует, что

$$M_{l0...0} = 0, M_{l_10...0} = I,$$

и при k > n матрицы $M_{l0...0}$, $M_{l_10...0}$ определяются формулами (9).

Теорема 1 Пусть выполнены условия 1,2 и функция f(x) является аналитической по x' и достаточно гладкой по t. Кроме того,

- 1. $(q_2, q_4) \subset q_0 \text{ unu } (q_1, q_3) \subset q_0;$
- 2. $QB_{\alpha}P = 0$ dis $acex \ \alpha \in (q_0, q_3, q_4) \setminus (l0...0), (l_10...0).$

Тогда задача (1), (2), (3) имеет единственное классическое решение (6).

Доказательство 1 Заметим, что при $\alpha \in q_0$ и при всех C $(I-Q)B_{\alpha}(D^{\alpha}C,\Phi)=0$, а также выполняется равенство $QB_{\alpha}\Gamma v=0$, где Qv=0. Тогда согласно условию 1 правая часть уравнения (11) независит от вектор - функции C(x) или правая часть уравнения (12) независит от v(x).

Уравнение (11) разрешимо относительно $D_t^l v$, то есть имеет форму Ковалевской с ограниченными операторными коэффициентами. На основании условия 2 система (12) имеет следующий вид

$$M_{l0...0}D_t^l C + M_{l_10...0}D_t^{l_1} C = b(x, v)$$
(13)

Eсли k = n, то $M_{l0...0} = 0$, $M_{l_10...0} = I$ и система (13) имеет порядок l_1 . Eсли k > n, то система (13) расщепляется на n независимых подсистем:

$$\frac{\partial^{l_1}}{\partial t^{l_1}} C_{ip_i} = b_{ip_i}(x, v), \frac{\partial^{l_1}}{\partial t^{l_1}} C_{ip_i - k} + \frac{\partial^l}{\partial t^l} C_{ip_i - k + 1} = b_{ip_i - k}(x, v), i = 1, \dots, n, \quad k = 1, \dots, p_i - 1.$$
(14)

Каждая подсистема из (14) является регулярной, так как представляет собой рекуррентную последовательность дифференциальных уравнений порядка l_1 . Таким образом, система (11),(12) с начальными условиями (7),(8) имеет форму Ковалевской и, следовательно, имеет единственное решение. Определяя v и C из регулярных систем (11),(12) и подставляя их в (6), получим решение уравнения (1).

Замечание 1 Пусть операторы B_{α} в условии 2 зависят от x при $\alpha \neq (l0...0)$, $(l_10...0)$. Тогда коэффициенты в системах (11),(12) также зависят от x. Если эти коэффициенты являются аналитическими по x' и достаточно гладкими по t, то теорема 1 остается справедливой. Как в [3] требуемая гладкость коэффициентов и функции f(x) по t определяется максимальной длиной A- жордановых цепей оператора B. Если $p = \max(p_1, \ldots, p_n)$, то $(c_M, [3])$ необходимо существование производных по t p-1 порядка от функции f(x) и от коэффициентов систем (11),(12).

2.1 ослабление условий 1, 2 в теореме 1

Условия 1, 2 в теореме 1 можно существенно ослабить, сохраняя регулярность систем (11),(12) и, следовательно, результат теоремы 1. Например, при k=n вместо условий 1, 2 можно потребовать выполнения следующих условий

1. $\max_{\alpha \in (q_2, q_4)} |\alpha| < l;$

2. $QB_{\alpha}P = 0$ при $\alpha \in (q_0, q_3, q_4), l_1 < |\alpha| \le l$.

Пусть k > n. Так как матрица $M_{l_10...0}$ является ортогональной, то система (12) имеет вид

$$D_t^{l_1}C + M_{l_10\dots 0} \sum_{|\alpha| \le l, \alpha \ne (l_10\dots 0)} M_{\alpha}D^{\alpha}C = M_{l_10\dots 0}b(x, v).$$
 (15)

Заметим, что

$$M_{l_10...0}M_{l_0...0} = (M_1, \dots, M_n) -$$

клеточно-диагональные матрицы и

$$M_i = \begin{bmatrix} 0 & 1 & 0 & ..0 \\ & & & \\ 0 & 0 & ...0 & 1 \\ 0 & 0 & ...0 & .0 \end{bmatrix}, i = 1, \dots, n.$$

Запишем единичную матрицу I в блочной форме

$$I = \left[\begin{array}{c} I_{p_1} \\ \dots \\ I_{p_n} \end{array} \right],$$

где I_{pi} — блоки размерности $p_i \times k$. Введем матрицу перестановок

$$R_{i_1,\dots,i_n} = \left[\begin{array}{c} I_{i_1} \\ \dots \\ I_{i_n} \end{array} \right],$$

где (i_1,\ldots,i_n) — перестановка чисел (p_1,\ldots,p_n) . Тогда при k>n вместо условия 2 теоремы 1 можно потребовать

2. Пусть: в (15) коэффициенты $M_{l_10...0}M_{\alpha}$ при $l_1 < \mid \alpha \mid \leq l$ являются клеточно-диагональными матрицами, где их диагональные блоки - верхне-треугольные матрицы размерности $p_i \times p_i$, на главных диагоналях которых стоят нули. Пусть другие матричные коэффициенты в (15) имеют такой же вид или могут быть сведены к верхне-треугольному виду с помощью умножения слева на матрицу перестановок $R_{i_1,...,i_n}$.

Тогда система (15) может быть сведена к рекуррентной последовательности дифференциальных уравнений формы Ковалевской порядка l_1 и теорема 1 остается справедливой.

3 Левые и правые регуляризаторы сингулярных операторов в банаховых пространствах

Пусть A и B— линейные операторы из X в Y, X, Y— банаховы пространства, x(t)— абстрактная функция, $t \in R^n$ со значениями в X(Y). Множество таких функций обозначим через X(t)(Y(t)). Введем оператор L_t , определенный на X_t и Y_t и перестановочный с операторами B, A, независимыми от t. Примерами такого оператора L_t будут операторы дифференцирования и интегрирования по t, разностные операторы и их комбинации. Отметим, что операторы, разрешенные относительно старших производных, обычно порождают корректные начально-краевые задачи, а операторам, неразрешенным относительно старших производных, как правило отвечают вырожденные задачи (см.параграф 2). Поэтому естественно ввести

Определение 1 Оператор L_t-C , где $C:X\to X(C:Y\to Y)$, разрешенный относительно оператора L_t назовем регулярным.

Рассмотрим оператор L_tB-A , действующий из X_t в Y_t , где B,A- замкнутые линейные операторы из X в Y с плотными областями определения, причем $D(B)\subseteq D(A)$. Если B обратим, то отображение L_tB-A сводится к регулярному умножением на B^{-1} . Если B необратим, то выражение L_tB-A назовем сингулярным оператором. Пусть в выражении L_tB-A оператор B фредгольмов и $\dim N(B)=n\geq 1$. Если при этом $\lambda=0-$ изолированная особая точка оператор-функции $B-\lambda A$, то оператор $L_tB-A(BL_t-A)$ допускает в определенном смысле регуляризацию. Для построения регуляризаторов в явном виде используем псевдорезольвенту Шмидта $\Gamma=\hat{B}^{-1}$, где $\hat{B}=B+\sum_{i=1}^n<.,A^*\psi_i^{(p_i)}>A\phi_i^{(p_i)}$. На основании условия 1 параграфа 2 и учитывая равенства $\phi_i^{(j)}=\Gamma A\phi_i^{(j-1)}, \quad \psi_i^{(j)}=\Gamma^*A^*\psi_i^{(j-1)}, \quad j=2,\ldots,p_i, \quad i=1,\ldots,n$ нетрудно проверить следующие тождества

$$(\Gamma - \sum_{i=1}^{n} \sum_{j=1}^{p_i} L_t^j < ., \psi_i^{(p_i+1-j)} > \phi_i)(L_t B - A) = L_t - \Gamma A,$$

$$(L_t B - A)(\Gamma - \sum_{i=1}^n \sum_{j=1}^{p_i} L_t^{p_i + 1 - j} < ., \psi_i > \phi_i^{(j)}) = L_t - A\Gamma.$$

Таким образом справедлива

Теорема 2 Пусть выполнено условие 1 параграфа 2. Тогда

$$\left(\Gamma - \sum_{i=1}^{n} \sum_{j=1}^{p_i} L_t^j < ., \psi_i^{(p_i + 1 - j)} > \phi_i\right)$$

является левым регуляризатором оператора L_tB-A , а оператор

$$\Gamma - \sum_{i=1}^{n} \sum_{j=1}^{p_i} L_t^{p_i + 1 - j} < ., \psi_i > \phi_i^{(j)}$$

- его правым регуляризатором.

Отметим, что полученные в данном параграфе результаты можно использовать при решении вырожденных дифференциально-операторных уравнений с фредгольмовым оператором при главной части (см. параграф 2).

References

- [1] М.М. Вайнберг, В.А. Треногин. Теория ветвления решений нелинейных уравнений. М.,1969.
- [2] И.Г.Петровский. Задача Коши для систем дифференциальных уравнений с частными производными. Математический сборник, 1937, 5, с.815-870.
- [3] Н.А.Сидоров, О.А.Романова, Е.Б.Благодатская. Уравнения с частными производными с оператором конечного индекса при главной части //Дифферен.уравнения, 1994, 4, с.729-731.
- [4] Н.А.Сидоров. Начальная задача для дифференциальных уравнений с фредгольмовым оператором в главной части //Вестник Челябинского ун-та. Серия математика и механика, 2(5), 1999,с.103-112.

Работа поддержана грантом INTAS - 2000-15.