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Abstract

We consider the reduction of the degenerate difference-differential equations with

Fredholm operator in the main expression to the regular problems. It is shown how

the question of the choice of boundary conditions is connected with the Jordan struc-

ture of operator coefficients of the equations. The problem of the choice of boundary

conditions is solved. The theorems of existence and uniqueness of boundary value

problems are proved. The abstract theorems are used for statement and investi-

gation of boundary value problems for partial differential equations and difference

equations with degeneration.
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1 Introduction

The correct statement and investigation of a boundary value problem for degenerated
systems is the major part in the modern theory of partial differential equations [2]. In case
of Fredholm operator at the main differential expression the following methods were used:
the analytical Nekrasov-Nazarov method [1], [14], the Lyapunov-Schmidt method [23], the
Jordan set technique [23], a technique of psedoinverse operators [5] and their modifications
[7], [11]-[18], a group symmetry methods [20], [22], a method of differential inclusions [3],
a topological method [14], methods of regularization of ill– posed problems [12]. It should
be noted that, unlike the classical bifurcation theory [23], for these problems the analog
of the Lyapynov-Schmidt bifurcation equation is differential or integral [12]. Finally, the
theory of analytical groups and semigroups of generating operators was developed in [19]
in order to solve singular problems. The theory of generalized solutions of such problems
in the class of Schwartz distributions was constructed in [8], [24]. The results of these
investigations have many applications (see references in [12], [19], [24]).
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However, in all papers mentioned above the problems were considered, which could be
interpreted as ordinary differential equations in Banach spaces. On the other hand, there
are a lot of systems of partial difference differential equations with a noninvertible operator
in the main part, which can not be interpreted in this way. So, in papers [6],[9], [10],
significantly more complex degenerated partial differential equations in Banach spaces
are considered. In this paper we develop the similar results for difference-differential
equations.

Let us consider the following equation

Λu ≡ L0Bu+ L1A1u+ · · ·+ LqAqu = f(x), (1)

where B and Ai, i = 1, q are closed linear operators with the dense domains from E1 to
E2; E1, E2 are Banach spaces and D(B) ⊆ D(Ai), i = 1, q, x ∈ Ω ⊂ Rr, B is Fredholm
operator with dimN(B) = dimN(B∗) = n,R(B) = R(B), f(x) : Ω ⊂ Rr → E2 is a
sufficiently smooth function; linear operators Li act on the sets of abstract functions,
defined on x ∈ Ω ⊂ Rr with the values in Banach spaces E2(E1) and satisfy the following
conditions:

1)D(L0) ⊂ D(L1) ⊂ D(Li), i = 2, . . . , q;
2)L0Bu(x) = BL0u(x), LiAiu(x) = AiLiu(x) on u(x) ∈ D(B) ∩D(L0).
Conditions 1) and 2) are carried out, for example, for difference- differential operators

of the following form

Li(
∂

∂x
,∆) =

∑

|k|≤qi

ai
k(x)D

k +
∑

|k|≤qi

bik(x)∆
k,

where

Dk =
∂k

∂xk1

1 . . . ∂xkr

r

,

∆ku =
k1
∑

i1=0

. . .
kr
∑

ir=0

(−1)|k|−|i|Ci1
k1
. . . Cir

kr
u(x1 + i1h1, . . . , xr + irhr),

q0 > q1 > q2 ≥ . . . ≥ qq, a
i
k(x), b

i
k(x) : Ω ⊂ Rr −→ R1. In what follows Li will denote this

concrete form of operators. It will be more convenient not to specify concretely D(L0).
The investigation of singular equation (1) is reduced to regular problems, i.e. to

equations solvable with respect to the main part L0. A special decompositions of the
Banach spaces E1 and E2 in accordance with the generalized Jordan structure of the
operator coefficients B,Ai, i = 1, q are used. This reduction makes it possible to pose
boundary value problems for (1).

2 P,Q-commutability of Linear Operators in Case of

Fredholm Operator

Let E1 = M1 ⊕N1, E2 = M2 ⊕N2, P be a projector on M1 along N1, Q be a projector on
M2 along N2, A be a linear closed operator from E1 to E2, D(A) = E1, A ∈ {A1, . . . , Aq}.
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Definition 1. If u ∈ D(A), Pu ∈ D(A), APu = QAu then A(P,Q) -commutes.
Suppose that φi|

n
1 is a basis in N(B), ψi|

n
1 is a basis in N∗(B), < φk, γi >= δki, i, k =

1, n, < zi, ψk >= δik, i, k = 1, n. Then based on [23] there is a unique bounded operator
Γ = (B +

∑n
i=1 < ., γi > zi)

−1.

Suppose the following condition is satisfied:
1. Fredholm operator B has a complete A1-Jordan set φ

(j)
i , i = 1, n, j = 1, pi, B

∗ has a

complete A∗
1- Jordan set ψ

(j)
i , i = 1, n, j = 1, pi, and the systems γ

(j)
i ≡ A∗

1ψ
(pi+1−j)
i , z

(j)
i ≡

A1φ
(pi+1−j)
i , here i = 1, n, j = 1, pi, corresponding to them are biorthogonal [7].
The projectors

P=

n
∑

i=1

pi
∑

j=1

< ., γ
(j)
i > φ

(j)
i ≡ (< .,Υ > Φ), (2)

Q=

n
∑

i=1

pi
∑

j=1

< ., ψ
(j)
i > z

(j)
i ≡ (< .,Ψ > Z), (3)

where k = p1 + · · · + pn -root number, generate the direct decomposition

E1 = E1k ⊕ E1∞−k, E2 = E2k ⊕ E2∞−k

Corollary 1. The operator Γ(Q,P )-commutes, A1Γ(Q,Q)-commutes, ΓA1(P, P )-
commutes, E1∞−k, E1k - invariant subspaces of the operator ΓA1 , E2∞−k, E2k- invariant
subspaces of the operator A1Γ.

The proof is carried out by the substitution of the operators Γ, A1Γ,ΓA1 in formulas
(2), (3), taking into account that ψ

(j)
i = (Γ∗A∗

1)
j−1ψ1

i , φ
(j)
i = (ΓA1)

j−1φ1
i , z

(pi+1−j)
i =

A1φ
(j)
i , γ

(pi+1−j)
i = A∗

1ψ
(j)
i , i = 1, n, j = 1, pi.

Suppose the operator A(P,Q)-commutes, where P,Q are defined by formulas (2), (3).
Then there is a matrix A, such that AΦ = AZ, A∗Ψ = A′Υ [9]. This matrix is called the
matrix of (P,Q)-commutability.

Corollary 2. The operators B,A1 (P,Q)-commute and the matrices of (P,Q)-
commutability are the symmetrical cell-diagonal matrices:

AB = diag(B1, . . . , Bn),A1 = diag(A11, . . . ,An1),

where

Bi =











0...0
0...1
.....

01...0











Ai1 =







0...1
....

1...0






, i = 1, n.

In case when k > n let us introduce definition.
Definition 2. The operator G (P,Q)-commutes quasitriangularly, if AG is upper

quasitriangular matrix, whose diagonal blocks Aii of dimension pi × pi, pi ≥ 2 are lower
right triangular matrices. If in addition pi∗ = . . . = pi∗+s = 1, then in matrix AG at the
left of bloc [Aij]i,j=i∗,i∗+s are nulls.
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3 The Reduction of Equation (1) to Regular Prob-

lems

Suppose:
2. The operators A2, . . . , Aq (P,Q)- commute.
Then there are matrices Ai, i = 2, q, such that

AiΦ = AiZ,A
∗
i Ψ = A′

iΥ

Following formulas (2), (3) we introduce the projection operators P,Q, which generate
the direct decompositions

E1 = E1k ⊕ E1∞−k, E2 = E2k ⊕ E2∞−k.

Note that ΓE2∞−k ⊂ E1∞−k

We look for the solution of equation (1) in the following form

u(x) = Γv(x) + (C(x),Φ), (4)

where Γ = (B +
∑n

i=1 < ., γ
(1)
i > z

(1)
i )−1 is a bounded operator , v ∈ E2∞−k, C(x) =

(C1(x), . . . , Cn(x))′, Ci(x) = (Ci1(x), . . . , Cipi
(x)),Φ = (Φ1, . . . ,Φn)′,Φi = (φ1

i , . . . , φ
(pi)
i ), i =

1, n.
Substituting expression (4) into equation (1) and noting that BΓv = v, since BΓ =

I −
∑n

i=1 < ., ψ
(1)
i > z

(1)
i , < v, ψ

(1)
i >= 0, we obtain

L0v +
q

∑

i=1

LiAiΓv + L0B(C,Φ) +
q

∑

i=1

LiAi(C,Φ) = f(x). (5)

The operator Γ (Q,P )-commutes, so from condition 2 and corollary 1 it follows that
QAiΓ(I − Q) = 0, (I − Q)AiΓQ = 0. Hence, QAiΓv = 0, ∀v ∈ E2∞−k. According to
corollary 2 BΦ = ABZ, where AB = (B1, . . . , Bm) is a symmetrical cell-diagonal matrix.
Consequently,

(I −Q)BΦ = 0, (I −Q)AiΦ = 0, i = 1, q, (6)

because (I −Q)Z = 0. The following equalities hold:

(Ai(C,Φ),Ψ) = A′
iC, (B(C,Φ),Ψ) = ABC. (7)

Projecting equation (5) onto E2∞−k using (6) we obtain the regular equation (solved
according to operator L0):

L̃v = (I −Q)f(x), (8)

where

L̃ = L0 +
q

∑

i=1

LiAiΓ. (9)

In order to determine the vector-function C(x) : Rr → Rk, we project equation (5)
onto E2k and using (7) we obtain

L0ABC +
q

∑

i=1

LiA
′
iC =< f(x),Ψ > . (10)
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So it is proved
Theorem 1. Suppose conditions 1 and 2 are satisfied, f : Ω ⊂ Rr → E2 - sufficiently

smooth function. Then any solution of equation (1) can be represented in the form

u = Γv + (C,Φ)

where v satisfies regular equation (8), and the vector C(x) is defined from system (10).
Since detAB = 0, then system (10) is degenerated in the general case. Let us specify

the sufficient conditions on which the systems (10) is recurrent sequence of regular linear
difference- differential equations (solved according to operator L1).

Introduce the following condition:
3 The operators A2, . . . , Aq commute quasitriangularly (see Def.2), or k = n.

Lemma 1. Suppose conditions 1, 2, 3 are satisfied. Then system (10) is a recurrent
sequence of linear difference- differential equations of order q1 with the operators of the
form

L̃ks = L1 +
q

∑

i=2

aik
pk−s+1,sLi.

In particular, if condition 1 is satisfied and A2 = . . . = Aq = 0, system (10) takes the
form

L1Cipi
(x) =< f(x), ψ

(1)
i >,

L1Cipi−s(x) =< f(x), ψ
(s+1)
i > −L0Cipi−s+1(x), s = 1, pi − 1, i = 1, n.

Proof follows from lemma 2 [6] or lemma [10].
So if the conditions of theorem 1 and lemma 1 are satisfied then equation (1) can be

reduced to regular equation (8) and to sequence of regular linear difference-differential
equations (10) with order q1. Thus under the condition 3 system (10) be pseudosingular
system.

Remark. Based on lemma 1 the vector components ci in the case pi ≥ 2 are deter-
mined from the recurrent sequence of linear equations of order q1. If pi∗ = . . . = pi∗+s = 1
then the corresponding elements ci∗(x), . . . , ci∗+s(x) are determined from the regular sys-
tem of s + 1 equations of order q1. In particular if p1 = · · · = pn = 1, then AB become
zero.

4 The Choice of Boundary Conditions

In this section conditions 1,2,3 are satisfied. In the preceding section for the definition of
projections (I − P )u, Pu the solution u of equation (1) we constructed equation (8) with
regular operator

L̃ = L0 +
q

∑

i=1

LiAiΓ,

and system (10), splitting into recurrent sequence of linear equations with regular difference-
differential operators

L̃ks = L1 +
q

∑

i=2

aik
pk−s+1,sLi.
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The main part of operator L̃ has the order q0, the main part of operator L̃ks - the
order q1. Because q1 < q0 then the boundary conditions on projections Pu, (I −P )u may
be different in the general case. If q1 = 0 then boundary conditions may be given only on
the projection (I − P )u.

Let ω = Ω1 ∩ Ω2 ⊂ Ω.
We shall find the solution u : ω ⊂ Rr → E1 of equation (1), whose projections

Pu, (I − P )u are subjected to the following boundary conditions:

τ1(I − P )u = α(x), x ∈ ∂Ω1, (11)

τ2Pu = β(x), x ∈ ∂Ω2. (12)

Here τ1, τ2are linear difference-differential operators in the space of abstract functions,
which commute with the projection operator P and with the operators B,Γ. So the func-
tions α(x), β(x) must satisfy conditions Pα(x) = 0, (I−P )β(x) = 0. Let the conditions of
theorem 1 be satisfied. We shall search for the solution u of equation (1), which satisfies
boundary conditions (11), (12). Based on theorem 1 the solution has the form

u(x) = Γv(x) + (C(x),Φ), (13)

where v satisfies (8) and the condition Qv = 0. The components of the vector C can be
find from system (10).

Lemma 2. If v, C satisfy the boundary conditions

τ1v = Bα(x), x ∈ ∂Ω1, (14)

τ2(C,Φ) = β(x), x ∈ ∂Ω2, (15)

then solution (13) satisfies boundary conditions (11), (12).
Proof. Since Pu = (C,Φ), then condition (12) holds if and only if condition (15) holds.

Since Qv = 0, PΓ = ΓQ, then (I − P )u = Γv. By applying the operator B to the both
sides of this equality, we obtain v = B(I −P )u. ¿From here τ1v = τ1B(I −P )u = Bα(x),
and so B[τ1(I−P )u−α(x)] = 0, i.e., τ1(I−P )u−α(x) ∈

∑

ciφi. So if v satisfies condition
(14) then v satisfies (11). Besides, it is not difficult to understand if v satisfies (11) then
v satisfies (14).

Lemma 3. If KerL̃ = {0} then any solution vof equation (8) with condition (14) lies
in the subspace E2∞−k.

Proof. Since QB = BP, Pα(x) = 0, QAiΓ = AiΓQ, then the projection Qv satisfies
homogeneous problem L̃Qv = 0. As Ker(L̃) = {0}, then Qv = 0 and v ∈ E2∞−k.

Suppose
4. Operators L̃, L̃ks have the bounded inverses.
Then based on lemma 2, lemma 3 and theorems 1 we obtain the following results
Theorem 3. Let conditions 1, 2, 3, 4 be satisfied. Then problem (1) with conditions

(11), (12) has the unique solution

u(x) = Γv(x) + (C(x),Φ),

where v satisfies problem (8), (14), vector C- equations (10) with condition (15).
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5 Examples

Theorem 3 can be used for the statement and the investigation nonclassical boundary
value problems for partial differential and difference equations with degeneration.

1) Suppose that the coefficients ai(x, y), bi(x, y) of elliptic equation (∆
def
= ∂2

∂x2 + ∂2

∂y2 ):

(4+a1(x, y)
∂

∂x
+a2(x, y)

∂

∂y
+a3(x, y))Bu+(

∂

∂x
+b1(x, y)

∂

∂y
+b2(x, y))Au = f(x, y) (16)

are defined in bounded domain Ω ⊂ R2 and belong to the space Cl−2,α(Ω), l ≥ 2, α ∈
(0, 1), f : Ω → E2 belongs to the space Cl−2,α(Ω). Fredholm operator B has a complete A
-Jordan set, A is a compact operator.

Let the domain ω ⊆ Ω, ∂ω = l1 ∪ ∂1 , where l1 is the part of the straight line
x = x0(fig.1).
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We shall consider the ”weakened” Dirichlet problem for equation (23) in the domain ω,
i.e. the problem of finding function u, satisfying equation (23) in ω, and on the boundary
∂ω the conditions

u|x=x0
= φ0(y), (17)

(I − P )u|∂1
= φ1(x, y), (18)

where φ0, φ1 ∈ Cl,α, Pφ1 = 0, (I − P )Φ0(y) = Φ1(x0, y), φ0, φ1 ∈ D(B).
Note that weakening the classical statement of the Dirichlet problem is that there is

no condition on projection Pu along ∂1 of the boundary ∂ω. It is connected with that
Pu will be defined from the system of the first order.

Based on theorem 1 the solution has form (4).
If condition 4 is satisfied and l ≥ 2max1≤i≤lpi then based on theorem 3 problem

(16)-(18) has the solution in the class Cl,α(ω̄).
Suppose that the homogeneous problem

L̃u ≡ (4 + a1(x, y)
∂

∂x
+ a2(x, y)

∂

∂y
+ a3(x, y))u+ (

∂

∂x
+ b1(x, y)

∂

∂y
+ b2(x, y))AΓu = 0,

u|∂ω = 0
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has only the trivial solution. Notice that this condition will be satisfied if the diameter of
the domain ω will be sufficiently small. It is not difficult to show that L̃ is continuously
invertible. In fact A is a compact operator, Γ is a bounded operator, so AΓ is a compact
operator. So the problem

L̃v = (I −Q)f(x, y)

with the ordinary Dirichlet conditions

v|x=x0
= B(I − P )φ0

v|∂1
= Bφ1

can be reduced to the equation of the second kind with the compact operator. (In the case
when E1 = E2 = Rn it was shown in [2]). So the operator L̃ is Fredholm operator, and
also N(L̃) = {0}. Therefore it is continuously invertible. Based on lemma 1 coefficients
of the vector C(x, y) are defined from the split recurrent sequence of linear differential
equations of the first order with the boundary condition

(C,Φ)|x=x0
= Pφ0(y).

So the conditions of theorem 3 for problem (16), (17), (18) are satisfied and it has unique
solution in the class Cl,α(ω̄).

Remark. If operator B has a complete A1- Jordan set, A1, A2 are compact operators,
aijξiξj ≥ ν

∑r
1 ξ

2
i , ν − const > 0,

L0(
∂

∂x
) =

r
∑

1

aij(x)
∂2

∂xi∂xj

+
r

∑

1

ai(x)
∂

∂xi

+ a(x),

L1(
∂

∂x
) =

∂

∂x1

+
r

∑

2

bi(x)
∂

∂xi

,

x ∈ Ω ⊂ Rr,

then similar results can be obtained for the equation

L0(
∂

∂x
)Bu+ L1(

∂

∂x
)A1u+ A2u = f(x), x ∈ ω,

with the boundary conditions (fig.2):

(I − P )u|∂ω = φ0(x), PΦ0 = 0,

Pu|x1=x0

1

= φ1(x2, . . . , xr) (I − P )Φ1 = 0.
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2) We now consider initial value problem for difference equation of first order

B(u(x+ 1) − u(x)) + Au = f(x), (19)

(I − P )u|x=0 = u0, Pu0 = 0. (20)

Here operators B,A satisfy condition 1, were A1
def
= A, x ∈ Ω = {0, 1, 2, . . .}.

We look for the solution of (19) in the following form

u(x) = Γv(x) + (C(x),Φ).

According to results of paragraph 3 the problem (19)-(20)can be reduced to following
problems:

v(x+ 1) − v(x) + AΓv(x) = (I −Q)f(x), (21)

v|x=0 = Bu0 (22)

AB(C(x+ 1) − C(x)) + A′
1C(x) =< f(x),Ψ > . (23)

and it follows from (20) that there is no boundary condition on C(x).
By initial value (22) one easily arrives at the next solution

v(x) = (I − AΓ)xBu0 +
x−1
∑

ν=0

(I − AΓ)x−ν−1(I −Q)f(ν),

under x = {1, 2, . . .}.
Based on lemma 1 coefficients of the vector C(x) are defined from the split recurrent

sequence
Cipi

(x) =< f(x), ψ
(1)
i >,

Cipi−s(x) =< f(x), ψ
(s+1)
i > −(Cipi−s+1(x+ 1) − Cipi−s+1(x)), s = 1, pi − 1, i = 1, n.

So the conditions of theorem 3 for problem (19)-(20) are satisfied and it has unique
solution.
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6 Conclusion

In regular case, when the operator in the leading part of degenerate equation is continu-
ously invertible, we can apply for investigation the well-known methods [2]. In irregular
case, the problems stated for such equations in the standard way in general have no
classical solutions [6]. It was shown in [6] that the solvability depends on the lowest
terms. Thus, the question on influence of the lowest terms is important for statement
of the boundary value problems in the theory of difference- differential equations with a
noninvertible operator in the leading part.

Correct statement of boundary value problems for partial differential equations and
difference equations with Fredholm operator in the split leading part and their investi-
gations can be simplified significantly if to find a reasonable projection of the solution
onto subspaces in accordance with properties of the Jordan structure of the operator
coefficients of the equation [6], [9], [10].

In general, the choice of boundary conditions for equation (1) which supply the exis-
tence of the unique classical solution for arbitrary f(x) is difficult. So, we need to extend
the class of solutions, where we seek for the boundary value problem solutions of equation
(1). For example, we can suppose that coefficients of projection Pu are the elements
of the distributions space. This extended notion of the solution for equation (1) when
x ∈ R1 was investigated in [8].

The method proposed in this paper of reduction of equation (1) to regular problems
can be applied to investigation in the case, when operator coefficients of equation (1)
depend of x.
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