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Abstract. In this paper we derived the explicit structure of generalized

solutions of the Volterra integral equations of the first kind. The solution

contains singular and regular components. These components can be

constructed separately. On the first stage we construct the singular

component of the solution by solving the special linear algebraic system.

On the second stage the regular component of generalized solution can

be constructed.

1. Introduction

A number of important engineering problems in electrical engineering

[3], in modeling of dynamic impulse systems [11], and in identification of

nonlinear dynamic systems [6], [2] can be represented as solution of the

Volterra integral equations of the first kind which does not have classical

continuous solutions. In some cases solutions of the algebra-differential

equations and differential-operator equations with irreversible operator

in the main part can be also represented via generalized solution of the
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Volterra integral equations of the first kind. The reader may see chapter

5 in the monograph [8] for details.

It is to be noted that solutions in the classes of generalized functions

have clear physical sense [10], [3]. Consequently, the problems of ex-

istence, deriving and numeric computing of generalized solutions of the

Volterra integral equations of the first kind are crucial in a number of

important problems appear in applied mathematics.

We omit the computational part in our paper and concentrate on the

structure of the generalized solutions to outline the main steps of the

algorithm.

Let us consider the Volterra integral equation of the first kind

t
∫

0

K(t, s)x(s)ds = f(t), t ≥ 0, (1)

where K(t, s) and f(t) are infinitely differentiable functions. If f(0) 6= 0,

then (1) does not have classic solutions and it is reasonable to look for

the solution in the distribution space [10]. Distribution space provides

existence of solution and follows the physical sense of the problem [10].

For example, we can use the special combination of Dirac functions with

deviating arguments as test signals for identification of nonlinear dynam-

ical systems [6], [2], [1]. In this case it is useful to construct generalized

solutions of the Volterra equations [1]. Generalized solution is the ba-

sis of mathematical models formulated in terms of impulses theory [11].

Various well-known electrical engineering problems [3] can be formulated

in terms of such theory.

Generalized solutions of the Volterra integral equations of the first kind

were considered in papers [5], [9], [7]. In paper [4] and in monograph [8]

the generalized solutions of the singular differential-operator equations

are considered. In this case such equations are reducible to the Volterra

integral equations of the first kind.

In this paper we continue these studies and generalize our results [9],

[7].

2. Problem Statement in the Class of Generalized

Functions

For any function K(τ, t) ∈ C∞(R2) and for any generalized function

x(t) ∈ D′
+ [10] we define new generalized function [Θ(t) ∗K(τ, t)x(t)]τ=t.

This function operates on the base of the function φ(t) ∈ D(R1) and
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follows the rule:

(

(Θ(t) ∗K(τ, t)x(t))|τ=t, φ(t)
)

=

(

x(t),

∞
∫

t

K(τ, t)φ(τ)dτ

)

, (2)

where

Θ(t) =

{

1, t ≥ 0

0, t < 0.

Function

ψ(t) =

∞
∫

t

K(τ, t)φ(τ)dτ

does not belong to the class D(R1) due to suppψ(t) = (−∞, τ1], where

τ1 = sup (suppφ(τ)). But equality (2) is correct because we suppose that

supp x(t) ⊂ [0,+∞). Hence set supp x(t) ∩ suppψ(t) is bounded.

In that case we can replace function ψ(t) with the finite function

ψ1(t) =

∞
∫

t

K1(τ, t)φ(τ)dτ,

where K1(τ, t) ∈ D(R2), K1(τ, t) = K(τ, t) on the set {(τ, t)|t, τ ∈

[0, τ1]}. Then on the set ψ1(t) = ψ(t) the value of the function (x(t), ψ1(t))

is defined. This value does not depend on selection of the function

K1(τ, t) outside the stated set. The functional (Θ(t) ∗ K(τ, t)x(t))|τ=t

belongs to D′
+. In fact, the linearity follows from the properties of linear-

ity of integral and functional x(t) ∈ D′
+. Let us prove the continuity. If

φk(τ) → 0 in D(R1), then ∃R > 0 : supp φk(τ) ⊂ [−R,R] for any k ∈ N.

Let K1(τ, t) ∈ D(R2), K1(τ, t) = K(τ, t) on the set {(τ, t)|t, τ ∈ [0, R]}.

Then the sequence

ψk
1(t) =

∞
∫

t

K1(τ, t)φk(τ)dτ → 0 in D(R1).

From this follows (x(t), ψk
1 (t)) → 0. If supp φ(τ) ⊂ (−∞, 0), then suppψ(t) ⊂

(−∞, 0) and supp x(t) ∩ suppψ(t) = ∅. Hence

supp
(

(Θ(t) ∗K(τ, t)x(t)|τ=t

)

⊂ [0,+∞).

Remark 1. If x(t) ∈ D′
+ is regular generalized function, i.e. x(t) =
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u(t)Θ(t), where u(t) is locally integrable then

(

(Θ(t) ∗K(τ, t)x(t))
∣

∣

τ=t
, φ(t)

)

=

∞
∫

0

u(t)

∞
∫

t

K(τ, t)φ(τ)dτdt

=

∞
∫

0

(

τ
∫

0

K(τ, t)u(t)dt

)

φ(τ)dτ =

((

t
∫

0

K(t, s)u(s)ds

)

Θ(t), φ(t)

)

,

i.e.

(

Θ(t) ∗K(τ, t)x(t)
)
∣

∣

τ=t
=

t
∫

0

K(t, s)u(s)dsΘ(t).

Remark 2. If x(t) = δ(m)(t), then

(

Θ(t) ∗K(τ, t)δ(m)(t)
)
∣

∣

τ=t
= (−1)m∂

mK(t, 0)

∂sm
Θ(t)

+
m−1
∑

i=0

(−1)i

i
∑

l=0

Ci−l
m−1−lC

l
m

∂iK(0, 0)

∂ti−l∂sl
δ(m−1−i)(t). (3)

In fact,

(

(

Θ(t)∗K(τ, t)δ(m)(t)
)
∣

∣

τ=t
, φ(t)

)

def
= (−1)m

(

dm

dtm

+∞
∫

t

K(τ, t)φ(τ)dτ

)
∣

∣

∣

∣

t=0

= (−1)m

(

+∞
∫

t

∂m

∂tm
K(τ, t)·φ(τ)dτ−

m
∑

j=1

dm−j

dtm−j

((∂j−1K(τ, t)

∂tj−1
φ(τ)

)
∣

∣

∣

τ=t

)

)
∣

∣

∣

∣

t=0

=

= (−1)m

+∞
∫

0

K0m(τ, 0)φ(τ)dτ

+(−1)m+1
m−1
∑

i=0

i+1
∑

j=1

Cm−1−i
m−j

( di+1−j

dti+1−j
K0 j−1(t, t)

)
∣

∣

∣

t=0
·φ(m−1−i)(0)

= (−1)m

+∞
∫

0

K0m(τ, 0)φ(τ)dτ

+(−1)m+1

m−1
∑

i=0

i
∑

j=0

Cm−1−i
m−j−1

( di−j

dti−j
K0 j(t, t)

)
∣

∣

∣

t=0
·(−1)m−1−i

(

δ(m−1−i)(t), φ(t)
)

,
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but

i
∑

j=0

Cm−1−i
m−j−1

( di−j

dti−j
K0 j(t, t)

)
∣

∣

∣

t=0
=

i
∑

l=0

Ci−l
m−1−lC

l
mKi−l l(0; 0).

Now let us come back to (1). Let x(t) ∈ C[0,t0] is the solution of (1).

If function x(t) is continued by zero for t < 0, then function x(t) is the

generalized solution of equation

(Θ(t) ∗K(τ, t)x(t)Θ(t))|τ=t = f(t)Θ(t).

Definition (2) is used here.

We call the problem of construction of the solution x(t) ∈ D′
+ of the

equation

(Θ(t) ∗K(τ, t)x(t))|τ=t = f(t)Θ(t), (4)

as problem of solvability of initial (1) in the class D′
+.

3. Generalized Solutions Construction

Now we introduce the basic condition to be used below:

A) K
(i)

ti
(t, s)|s=t = 0, i = 0, 1, ..., n− 1,

K
(n)
tn (t, s)|s=t ∼ atm, a 6= 0 for t→ 0, m ≥ 0.

Taylor formula gives us K(t, s) = (t − s)nQ(t, s), K
(n)
tn (t, s)|s=t =

n!Q(t, t), where

Q(t, s) = Q1(t, s) +
∑

i+k≥m

aikt
isk,

Q1(t, t) = 0,
∑

i+k=m

aik = a.

IfK(t, s) is not the convolution, then we can consider the most interesting

case m ≥ 1. In this case the conditions of existence and uniqueness of

the generalized solutions of the (1) are not well studied. We follow paper

[9] and look for the solution as the following series

x = c0δ(t) + ... + cnδ
(n)(t) + u(t)Θ(t), (5)

where δ(t) is the Dirac function and u(t) is regular function.

On the base of formula (3) due to the condition A for j ≤ n the

following equalities are correct

(Θ(t) ∗K(τ, t)δ(j)(t))|τ=t = (−1)jK
(j)

sj (t, 0)Θ(t).
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From these equalities follows that regular item u(t) should satisfy the

equation
t

∫

0

K(t, s)u(s)ds = F (t, c), (6)

where

F (t, c) = f(t) −
n

∑

j=0

(−1)jK
(j)

sj (t, 0)cj. (7)

Let vector c = (c0, ..., cn)′ satisfies the equalities

n
∑

j=0

(−1)j ∂
i+jK(0, 0)

∂ti∂sj
cj = f (i)(0), i = 0, 1, ..., n. (8)

Then (6) is an equivalent of the Volterra integral equation of the third

kind:

n!Q(t, t)u(t) +

t
∫

0

∂n+1K(t, s)

∂tn+1
u(s)ds = F (n+1)(t, c), (9)

where Q(t, t) ∼ atm. For existence of the regular solution u(t) of (9) due

to condition A it is necessary the equality F
(n+i)
tn+1 (0, c) = 0, i = 1, ..., m

to be hold.

That is why the sought vector c should satisfy the following system

n
∑

j=0

(−1)j ∂
i+jK(0, 0)

∂ti∂sj
cj = f (i)(0), i = 0, 1, ..., n+m. (10)

If system (10) is not solvable, then (1) does not have the generalized

solutions (5) with singularity order n.

Lemma 1. Let the following conditions hold true:

∂n+mK(0, 0)

∂ti∂sm+n−i
6= 0, i = m,m + 1, ..., m+ n,

Q1(t, s) = 0, condition A and f (i)(0) = 0, i = 0, 1, ..., m−1. Then system

(10) has unique solution.

Proof. To prove this lemma it is enough to note that system (10) in

the conditions of this lemma is following

n
∑

j=0

(−1)j ∂
m+k+jK(0, 0)

∂tm+k∂sj
cj = f (m+k)(0), k = 0, 1, ..., n. (11)
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In this system the matrix is low triangular and

|det4| =

n
∏

i=0

|
∂m+nK(0, 0)

∂tm+i∂sn−i
| 6= 0.

Let vector c satisfy the system (10). Then, for all t, we have

m+n
∑

i=0

( n
∑

j=0

∂i+jK(0, 0)

∂ti∂sj
cj − f (i)(0)

)

ti

i!
= 0

and we can rewrite the right hand side of (6) as follows:

F (t, c) = f(t)−
n+m
∑

i=0

f (i)(0)
ti

i!
−

n
∑

j=0

(−1)j

(

∂jK(t, 0)

∂sj
−

n+m
∑

i=0

∂i+jK(0, 0)

∂ti∂sj

ti

i!

)

cj.

Due to the foregoing formulae on the base of Taylor formula, we have

F (t, c) = O(tn+m+1).

Finally,

lim
t→0

F n+1(t, c)

Q(t, t)
= 0, (12)

if Q1(t, s) = 0.

In addition, due to condition A in the area 0 < s ≤ t ≤ t0, we can

guarantee the following estimate:

∂n+1K(t,s)
∂tn+1

Q(t, t)
= O

(

1

t

)

. (13)

Integral (9) has the regular singularity in zero due to estimate (13).

Further, let the homogeneous equation which corresponds to (1) has

only zero solution. In this case we can construct the formal solution of

integral (9) by the method of unknown coefficients:

u(t) ∼
∞

∑

1

uit
i. (14)

�

Remark 3. Lemma 1 is still correct if Q(t, s) =
∑

i,k

aikt
isk where aik = 0

for i + k ≤ m− 1, i ≤ m− 1, k ≤ n.

Remark 4. Due to condition A, for Q1(t, s) = 0 we have

∂n+1K(t, s)

∂tn+1
=

∑

i+k=m−1

bikt
isk +O((t+ s)m).
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Then uniqueness of the solution of the homogeneous equation is equiva-

lent of the condition

a+
∑

i+k=m−1

bik
1

k + l
6= 0

for l = 0, 1, ...

Theorem 1. Let the homogeneous equation which correspond to (1) has

only zero formal solution (14) and the conditions of Lemma 1 hold true.

Then (1) has unique solution (5) in the class D′
+.

Proof. We define the vector c in expansion (5) from system (11) by sub-

stituting it in the right hand side of (9). We can find N first coefficients

ui of formal solution (14).

Let u =
N
∑

i=1

Uit
i + V (t) in (9). Then to define V (t) we get the integral

equation

V (t) +

t
∫

0

L(t, s)V (s)ds = b(t),

where

L(t, s) =
K

(n+1)
tn+1 (t, s)

n!Q(t, t)
,

b(t) =
F (n+1)(t, c)

n!Q(t, t)
−

N
∑

i=0

(

Uit
i +

∫ t

0

L(t, s)Uis
ids

)

.

Taking into account (13), we can note that b(t) = O(tN+1). The kernel
c
t
, c > 0 has the resolvent c

t

(

t
s

)c
. Because of estimate (13), the kernel

L(t, s) in the area 0 < s ≤ t ≤ t0 for small enough t0 also has resolvent

R(t, s) with similar estimate. But in this case, for an N great enough, the

integral
∫ t

0
R(t, s)b(s)ds is converging and we can define function V (t) by

known formula

V (t) = b(t) +

∫ t

0

R(t, s)b(s)ds.

�

Remark 5. If the assumptions of Theorem 1 hold true, and f (i)(0) =

0, i = m, ...,m+ n, then c0 = ... = cn = 0 and solution (5) is classical.
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Now we consider the generalized solutions of (1) for
m+n
∑

i=0

|f (i)(0)| 6= 0.

We will prove that in this case the generalized solutions with the highest

singularity order can exist.

We use the following condition below

B) ∂i+jK(0,0)
∂ti∂sj =

{

0, 0 ≤ i + j ≤ n+m− 1

6= 0, i + j = n+m.

If condition A holds true, then

Q(t, s) =
∑

i+k≥m

aikt
isk.

We look for the solution of (1) as following

x(t) = c0δ(t) + ...+ cn+mδ
(n+m)(t) + u(t)Θ(t). (15)

We can define vector (c0, ..., cn+m)′ from the system

Ξc = β, (16)

where

Ξ =

∥

∥

∥

∥

(−1)j ∂
i+jK(0, 0)

∂ti∂sj

∥

∥

∥

∥

i,j=0,n+m

,

β = (f(0), f ′(0), ..., fn+m(0)).

Due to condition B, the matrix of system (10) is lower triangular and

non degenerated. To define the regular component u(t) we again have

(6) where F (t, c) = f(t) −
n+m
∑

j=0

(−1)jK
(j)

sj (t, 0)cj.

The solution c of system (16) for any t obviously satisfies the equality

n+m
∑

j=0

(−1)j

n+m
∑

i=n+m−j

∂i+jK(0, 0)

∂ti∂sj

ti

i!
cj =

n+m
∑

i=0

f (i)(0)
ti

i!
.

From condition A, F n+1(t,c)
Q(t,t)

= O(t) and from the aforesaid proof of The-

orem 1 we have the following theorem.

Theorem 2. Let the homogeneous equation which corresponds to (1)

has only zero solution and conditions A and B hold true. Then, for any

f(t) ∈ C∞[0, t0), (1) has unique generalized solution (15).

Remark 6. If the assumptions of Theorem 2 hold true and f(0) = f ′(0) =

... = f (m−1)(0) = 0, then cn+1 = ... = cn+m = 0 and the result of Theorem

1 is obtained.
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4. Notes on the Families of Parametric Generalized

Solutions

Let the assumptions of Theorem 2 hold true and some of [n + m]th

derivatives of the kernel K(t, s) at the point (0,0) be zeros. Then matrix Ξ

in system (16) is degenerate. If in this case system (16) remains solvable,

then (1) has n + m + 1 − r-parametric family of generalized solutions

(15), where r = rankΞ. If in this case we assume that the homogeneous

equation of (1) has d nontrivial solutions for d ≤ n + m + 1 − r, then

d arbitrary parameters in vector c can be defined by the construction of

the formal series (14). But in this case the coefficients ui of the formal

series (14) remains arbitrary and we again get n+m+ 1− r parametric

family of generalized solutions (15).

Note also that if system (15) is not solvable then there are no general-

ized solutions of (1).

Conclusion. In our paper we have presented new approach to the

construction of the generalized solutions of the Volterra integral equa-

tions of the first kind. This approach along with the methods presented

in paper [4] and in the monograph [8] (chapter 6) provides a base for con-

struction of the theory of generalized solutions of the Volterra integral

equations of the first kind in the Banach spaces.

On the base of Theorems 1 and 2 one can construct generalized so-

lutions of the Volterra equation (1) based on a two-stage analytical-

numerical scheme. The solutions contain two components: the singular

and the regular one. These components have to be constructed sepa-

rately. The order of singular component is discussed above. On the

first stage we construct the singular component of the solution by solv-

ing the special linear algebraic system. On the second we construct the

regular component of generalized solution by solving integral (6) with

transformed right hand side. Here, for example, we can use regularized

numerical methods [1].
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