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Abstract

A lower semicontinuity result is proved in the space of special functions of bounded deformation for
a fracture energetic model∫

Ju

Ψ([u], νu)dHN−1 , [u] · νu ≥ 0 HN−1 − a. e. on Ju.

A characterization of the energy density Ψ, which ensures lower semicontinuity, is also given.

Keywords: Lower semicontinuity, fracture, special functions of bounded deformation.
2000 Mathematical Subject Classification: 49J45, 74A45, 74R10.

1 Introduction

In recent years a considerable attention has been devoted to Fracture Mechanics in order to describe the
behavior of brittle bodies, such as the propagation of the fracture inside the material, the equilibrium
configurations, the crack site, the interaction between the elastic energy and the dissipated energy. In
particular, in [5, 6] it has been studied, both from the mechanical and computational view point, in the
regime of linearized elasticity, the propagation of the fracture in a cracked body with a dissipative energy a
la Barenblatt, i.e. of the type

∫
K
φ([u] · νu, [u] · τu)dHN−1, where K denotes the unknown crack site, [u] · νu,

[u] · τu represent the detachment and the sliding components respectively, of the opening of the fracture [u],

and the energy density φ has the form φ([u] · νu, [u] · τu) =

 0 if [u] · νu = [u] · τu = 0,
constant if [u] · νu ≥ 0,
+∞ if [u] · νu < 0

It has to be emphasized that the form of the energy density φ also takes into account an infinitesimal
noninterpenetration constraint, i.e. all the deformations u pertainining to the effective description of the
energy must satisfy [u] · νu ≥ 0 HN−1 a.e. on K.

In order to derive, from the mathematical view point, the properties of the energy φ above which guarantee
lower semicontinuity with respect to the natural convergences (2.13) ÷ (2.15) below, in order to generalize
the models contained in [5, 6] and to extend the lower semicontinuity results for surface integrals contained
in [8], the following result has been proved in [11]:

Theorem 1.1. Let Ω be a bounded open subset of RN , Let

Φ := {ϕ : [0,+∞[→ [0,+∞[, ϕ convex, subadditive and nondecreasing} (1.1)

and let ϕ ∈ Φ. Let {uh} be a sequence in SBD(Ω), such that [uh] · νuh ≥ 0 HN−1-a.e. on Juh for every h,
converging to u in L1(Ω; RN ) satisfying (2.12) below, with a function θ : [0,+∞[→ [0,∞[ nondecreasing and
verifying the superlinearity condition (2.11) below. Then

[u] · νu ≥ 0 HN−1 − a.e. on Ju, (1.2)
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and ∫
Ju

ϕ([u] · νu)dHN−1 ≤ lim inf
h→+∞

∫
Juh

ϕ([uh] · νuh)dHN−1. (1.3)

Clearly the class Φ in (1.1) includes functions of the type φ above, but it has also to be observed that,
in general, the functions in Φ can be truly convex. In fact, typical examples of functions in Φ are given by
ϕ : s ∈ R+ 7→ (1 + sp)

1
p , p ≥ 1, but in practice this class of functions does not perfectly fit the mechanical

framework, where actually a ‘concave-type’ behavior is expected.
The aim of this paper, indeed, consists of finding a mechanically more interesting class of functions

containing the function φ in [5, 6], and also including energy densities with a more general dependence from
the opening of the fracture [u] and from the normal of the crack site νu, rather than just from their scalar
product [u] · νu. To this end we introduce the following type of functions. Let Ψ : (a, b) ∈ RN × SN−1 →
[0,+∞[ be defined as follows

Ψ : (a, b) ∈ RN × SN−1 7→ sup
ξ∈SN−1

|b · ξ|ψ(|a · ξ|), (1.4)

where ψ : [0,+∞[→ [0,+∞[ is a lower semicontinuous, nondecreasing subadditive function (more generally a
lower semicontinuos function such that ψ(|·|) is subadditive). Consequently the following lower semicontinuity
result with respect to convergences (2.13) ÷ (2.15) can be established:

Theorem 1.2. Let Ω be a bounded open subset of RN , let θ : [0,+∞[→ [0,+∞[ be a non-decreasing function
verifying the superlinearity condition (2.11), and let Ψ be as in (1.4) where ψ : [0,+∞[→ [0,+∞[ is a lower
semicontinuous function such that t ∈]−∞,+∞[→ ψ(|t|) is subadditive. Let {uh} be a sequence in SBD(Ω)
satisfying the bound (2.12), such that [uh] · νuh ≥ 0 HN−1-a.e. on Juh for every h and converging to u in
L1(Ω; RN ). Then (1.2) holds and∫

Ju

Ψ([u], νu)dHN−1 ≤ lim inf
h→+∞

∫
Juh

Ψ([uh], νuh)dHN−1 (1.5)

We observe that the energy
∫
Ju
φ([u] · νu, [u] · τu)dHN−1 in [5, 6] with φ as above can be recasted in the

terms of a suitable Ψ as in (1.4) requiring that the noninterpenetration constraint (1.2) is verified, (see (i)
of Examples 4.7). On the other hand, as observed in Remark 4.8 the class of functions of the type Ψ is
different from Φ in (1.1), and not including it. The difference among the two classes is not very surprising,
and in fact, also the techniques adopted to prove the two lower semicontinuity results (Theorem 1.1 and
Theorem 1.2) are very different, the first relying on Measure Theory and the second on the structure of the
Special functions of Bounded Deformation, enlightened in [3, 8]. A rather comprehensive analysis of the
properties and a characterization of the function Ψ in (1.4) are given below. In detail, the paper is organized
as follows. In Section 2 the principal results from Measure Theory, concerning spaces of functions with
bounded deformation, are recalled. Section 3 is devoted to the proof of the lower semicontinuity theorem,
while the properties of the energy density are investigated in Section 4, where also a comparison with the
functions belonging to the class (1.1) is given.

2 Notations and Preliminaries

Here and in the sequel, let Ω be a bounded open subset of RN . We shall usually suppose, when non explicitly
mentioned, (essentially to avoid trivial cases) that N > 1. Let u ∈ L1(Ω; Rm), the set of Lebesgue points of
u is denoted by Ωu. In other words x ∈ Ωu if and only if there exists ũ(x) ∈ Rm such that

lim
%→0+

1
%N

∫
B%(x)

|u(y)− ũ(x)|dy = 0.

The space BD(Ω) of vector fields with bounded deformation is defined as the set of vector fields u =
(u1, . . . , uN ) ∈ L1(Ω; RN ) whose distributional gradient Du = {Diu

j} has the symmetric part

Eu = {Eiju}, Eiju = (Diu
j +Dju

i)/2
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which belongs to Mb(Ω;MN×N
sym ), the space of bounded Radon measures in Ω with values in MN×N

sym , the
space of symmetric N×N matrices. For u ∈ BD(Ω), the jump set Ju is defined as the set of points x ∈ Ω
where u has two different one sided Lebesgue limits u+(x) and u−(x), with respect a suitable direction
νu(x) ∈ SN−1 = {ξ ∈ RN : |ξ| = 1}, i.e.

lim
%→0+

1
%N

∫
B±% (x,νu(x))

|u(y)− u±(x)|dy = 0, (2.1)

where B±% (x, νu(x)) = {y ∈ RN : |y − x| < %, (y − x) · νu(x) > 0}. In [3] it has been proved that for every
u ∈ BD(Ω) the jump set Ju is Borel measurable and countably (HN−1, N−1) rectifiable and νu(x) is normal
to the approximate tangent space to Ju at x for HN−1-a.e. x ∈ Ju, where HN−1 is the (N − 1)-dimensional
Hausdorff measure (see [4] and [10]).
Let u ∈ BD(Ω), the Lebesgue decomposition of Eu is written as

Eu = Eau+ Esu

with Eau the absolutely continuous part and Esu the singular part with respect to the Lebesgue measure
LN .
The density of Eau with respect to LN is denoted by Eu, i.e. Eau = EuLN . We recall that Esu can be
further decomposed as

Esu = Eju+ Ecu

with Eju, the jump part of Eu, i.e. the restriction of Esu to Ju and Ecu the Cantor part of Eu, i.e. the
restriction of Esu to Ω \ Ju. Furthermore, in [3] it has been proved that

Eju = (u+ − u−)� νuHN−1 bJu (2.2)

where � denotes the symmetric tensor product, defined by a � b := (a ⊗ b + b ⊗ a)/2 for every a, b ∈ RN ,
and HN−1 bJu denotes the restriction of HN−1 to Ju, i.e. (HN−1 bJu )(B) = HN−1(B ∩ Ju) for every Borel
set B ⊆ Ω. Moreover in [3] it has been also proved that |Ecu|(B) = 0 for every Borel set B ⊆ Ω such that
HN−1(B) < +∞, where | · | stands for the total variation. In the sequel, for every u ∈ L1

loc(Ω; RN ) we denote
by [u] the vector u+ − u−. For any y, ξ ∈ RN , ξ 6= 0, and any B ∈ B(Ω) we define

πξ := {y ∈ RN : y · ξ = 0},
Bξy := {t ∈ R : y + tξ ∈ B},
Bξ := {y ∈ πξ : Bξy 6= ∅},

(2.3)

i.e. πξ is the hyperplane orthogonal to ξ , passing through the origin and Bξ = pξ(B), where pξ, denotes the
orthogonal projection onto πξ. Bξy is the one-dimensional section of B on the straight line passing through
y in the direction of ξ.

Given a function u : B → RN , defined on a subset B of RN , for every y, ξ ∈ RN , ξ 6= 0, the function
uξy : Bξy → R is defined by

uξy(t) := uξ(y + tξ) = u(y + tξ) · ξ for all t ∈ Bξy. (2.4)

In [3] it has been proved that a vector field u belongs to BD(Ω) if and only if its ’projected sections’ uξt
belong to BV (Ωξt ). More precisely the following Structure Theorem (cf. Structure Theorem 4.5 in [3]) has
been proved.

Theorem 2.1. Let u ∈ BD(Ω) and let ξ ∈ RN with ξ 6= 0. Then

(i) Eauξ · ξ =
∫

Ωξ
DauξydHN−1(y), |Eauξ · ξ| =

∫
Ωξ
|Dauξy|dHN−1(y).

(ii) For HN−1-almost every y ∈ Ωξ, the functions uξy and ũξy belong to BV (Ωξy) and coincide L1-almost
everywhere on Ωξy, the measures |Duξy| and V ũξy coincide on Ωξy ,and Eu(y+tξ)ξ ·ξ = ∇uξy(t) = (ũξy)′(t)
for L1-almost every t ∈ Ωξy.
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(iii) Ejuξ · ξ =
∫

Ωξ
DjuξydHN−1(y), |Ejuξ · ξ| =

∫
Ωξ
|Djuξy|dHN−1(y).

(iv) (Jξu)ξy = Juξy for HN−1-almost every y ∈ Ωξ and for every t ∈ (Jξu)ξy

u+(y + tξ) · ξ = (uξy)+(t) = lims→t+ ũ
ξ
y(s)

u−(y + tξ) · ξ = (uξy)−(t) = lims→t− ũ
ξ
y(s),

where the normals to Ju and Juξy are oriented so that νu · ξ ≥ 0 and νuξy = 1.

(v) Ecuξ · ξ =
∫

Ωξ
DcuξydHN−1(y), |Ecuξ · ξ| =

∫
Ωξ
|Dcuξy|dHN−1(y).

The space SBD(Ω) of special vector fields with bounded deformation is defined as the set of all u ∈ BD(Ω)
such that Ecu = 0, or, in other words

Eu = EuLN + (u+ − u−)� νuHN−1 bJu

We also recall that if Ω ⊂ R, then the space SBD(Ω) coincides with the space with the space of real
valued special functions of bounded variations SBV (Ω), consisting of the functions whose distributional
gradient is a Radon measure with no Cantor part (see [4] for a comprehensive treatment of the subject).

Proposition 2.2. Let u ∈ BD(Ω) and let ξ1, . . . , ξN be a basis of RN . Then the following three conditions
are equivalent:

(i) u ∈ SBD(Ω).

(ii) For every ξ = ξi + ξj with 1 ≤ i, j ≤ n, we have uξy ∈ SBV (Ωξy) for HN−1-almost every y ∈ Ωξ.

(iii) The measure |Esu| is concentrated on a Borel set B ⊂ Ω which is σ-finite with respect to HN−1.

Definition 2.3. For any u ∈ BD(Ω) we define the non-negative Borel measure λu on Ω as

λu(B) :=
1

2ωN−1

∫
SN−1

λξu(B)dHN−1(ξ) ∀B ∈ B(Ω), (2.5)

where, for every ξ ∈ SN−1

λξu(B) :=
∫

Ωξ
H0(Juξy ∩B

ξ
y)dHN−1(y) ∀B ∈ B(Ω). (2.6)

Let
Jξu :=

{
x ∈ Ju : (u+ − u−) · ξ 6= 0

}
, (2.7)

we recall that

HN−1(Ju \ Jξu) = 0 for HN−1 − a.e. ξ ∈ SN−1. (2.8)

The following result is a consequence of the Structure Theorem

Theorem 2.4. For every u ∈ BD(Ω) and any ξ ∈ SN−1,

λξu(B) =
∫
Jξu∩B

|νu · ξ|dHN−1 ∀B ∈ B(Ω), (2.9)

where νu is the approximate unit normal to Ju. Moreover λu = HN−1bJu.

The same argument of Theorem 2.4, i.e. (iv) of Theorem 2.1 and the fact that the (N − 1)-dimensional area
factor of pξ on Ju is |νu · ξ| guarantees that for every Borel function g : Ω→ [0,+∞], it results∫

Jξu∩B
g(y)|νu · ξ|dHN−1(y) =

∫
Ωξ

∫
pξ(J

ξ
u∩B)

g(y + tξ)dH0(t)dHN−1(y) (2.10)

for any ξ ∈ SN−1.

We recall the following compactness result for sequences in SBD proved in [8], (cf. Theorem 1.1 and
Remark 2.3 therein).
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Theorem 2.5. Let θ : [0,+∞[→ [0,+∞[ be a non-decreasing function such that

lim
t→0+

θ(t)
t

= +∞. (2.11)

Let {uh} be a sequence in SBD(Ω) such that

‖uh‖L∞(Ω;RN ) +
∫

Ω

θ(|Euh|)dx+HN−1(Juh) ≤ K (2.12)

for some constant K independent of h. Then there exists a subsequence, still denoted by {uh}, and a function
u ∈ SBD(Ω) such that

uh → u strongly in L1
loc(Ω; RN ), (2.13)

Euh ⇀ Eu weakly in L1(Ω;MN×N
sym ), (2.14)

Ejuh ⇀ Eju weakly* in Mb(Ω;MN×N
sym ), (2.15)

HN−1(Ju) ≤ lim inf
h→+∞

HN−1(Juh) (2.16)

The following results from Measure Theory will be exploited in the sequel, (cf. Lemma 2.35 in [4] and
Lemma 3.6 in [9] respectively).

Lemma 2.6. Let λ be a positive σ-finite Borel measure in Ω and let ϕi : Ω → [0,∞], i ∈ N, be Borel
functions. Then ∫

Ω

sup
i
ϕidλ = sup

{∑
i∈I

∫
Ai

ϕidλ

}
where the supremum ranges over all finite sets I ⊂ N and all families {Ai}i∈I of pairwise disjoint open sets
with compact closure in Ω.

Lemma 2.7. Let k be a positive integer, and let

Mk = {λ ∈M(Ω; Rk) : H0(sptλ) ≤ k}.

Then Mk is sequentially weakly ∗ closed. Moreover, for every lower semicontinuous function g : Ω× Rn →
[0,+∞] satisfying the subadditivity condition

g(x, s1 + s2) ≤ g(x, s1) + g(x, s2) for every x ∈ Ω and s1, s2 ∈ Rn,

the functional

G(λ) =
∫

Ω

g(x, λ(x))dH0 =
∑

x∈sptλ

g(x, λ({x}))

is sequentially weakly ∗ lower semicontinuous on Mk.

Finally we recall an approximation result that will be used in the next section (see Lemma 1.61 in [4]).

Lemma 2.8. Let c ∈ R, u : X → [c,∞] not identically equal to ∞ and define for t > 0

ut := inf {u(y) + td(x, y) : y ∈ X} ,

where d is the distance in X. Then Lip(ut) ≤ t, ut ≤ u (Lip(v) being the Lipschitz constant of the function
v) and ut(x) ↑ u(x) as t ↑ ∞ whenever x is a lower semicontinuity point of u.
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3 Lower Semicontinuity

This section is devoted to the proof of Theorem 1.2. To this end we state and prove some preliminary lower
semicontinuity results.

Lemma 3.1. Let ψ : [0,+∞[→ [0,+∞[ be a lower semicontinuous function such that ψ(| · |) is subadditive.
Let θ : [0,+∞[→ [0,+∞[ be a nondecreasing function such that the superlinearity condition (2.11) holds.
Let I be an open interval of R. Let {uj} ⊂ SBV (I) such that

‖uj‖L∞(I) +
∫
I

θ(|u′j |)dx+H0(Juj ) ≤ C

(here u′j denotes the absolutely continuous part of Duj with respect to the Lebesgue measure). Assume also
that uj → u in L1(I). Then∫

Ju

ψ(|u+ − u−|)dH0 ≤ lim inf
j→+∞

∫
Juj

ψ(|u+
j − u

−
j |)dH

0.

Proof. First consider a subsequence {ujk} such that lim infj→+∞
∫
Juj

ψ(|u+
j − u

−
j |)dH0 is a limit on k. By

virtue of Theorem 2.5, it results that it admits a further subsequence, still denoted by {ujk}, such that all
the convergence relations (2.13)÷(2.16) hold in I. Consequently, since ψ(| · |) is subadditive, Lemma 2.7,
applied to the measure λ = (u+ − u−)H0bJu and to g(x, s) = ψ(|s|), ensures that∫

Ju

ψ(|u+ − u−|)dH0 ≤ lim
k→+∞

∫
Jujk

ψ(|u+
jk
− u−jk |)dH

0 = lim inf
j→+∞

∫
Juj

ψ(|u+
j − u

−
j |)dH

0.

Remark 3.2. We emphasize that a mechanically relevant class of lower semicontinuous functions ψ sat-
isfying the assumptions of Lemma 3.1 is consituted of functions ψ : [0,+∞[→ [0,+∞[ subadditive and
nondecreasing. On the other hand the nondecreasing behavior of ψ is just a sufficient condition to ensure
that the function t ∈] −∞,+∞[→ ψ(|t|) being subadditive: any function ψ with range in [1, 2] would still
satisfy the hypotheses of Lemma 3.1.

Finally we observe that the lower semicontinuity result proved in Lemma 3.1 still holds when replacing
the open interval I, by any open set of R, thanks to the superadditivity of the liminf operator, at least on
non-negative families.

An interesting example of functions ψ lower semicontinuous, nondecreasing and subadditive, clearly
satisfying the assumptions of Lemma 3.1 is given by the Dugdale function

ψD : t ∈ [0,+∞[→ min{t, 1} (3.1)

relevant in the applications to Continuum Mechanics.
The proof of the following result exploits the structure of SBD functions enlightened in Theorem 1.1 in

[8].

Lemma 3.3. Let ψ : [0,+∞[→ [0,+∞[ be a lower semicontinuous function such that the function t ∈
]−∞,+∞[→ ψ(|t|) is subadditive. Let Ω be a bounded open subset of RN , and let θ : [0,+∞[→ [0,+∞[ be
a non-decreasing function verifying the superlinearity condition (2.11). Let {uh} be a sequence in SBD(Ω)
satisfying the bound (2.12), such that [uh] · νuh ≥ 0 HN−1-a.e. on Juh for every h and converging to u in
L1(Ω; RN ) . Then∫

Ju

|ξ · νu|ψ(|[u](y) · ξ|)dHN−1(y) ≤ lim inf
h→+∞

∫
Juh

|ξ · νuh |ψ(|[uh](y) · ξ|)dHN−1(y) (3.2)

for HN−1-a.e. ξ ∈ SN−1.
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Proof. Let {uh} ⊂ SBD(Ω) satisfying the bound (2.12) and converging to u ∈ L1(Ω). From Theorem 2.5
u ∈ SBD(Ω).

Let ξ ∈ SN−1, and let pξ : Ju → πξ be the orthogonal projection onto πξ. First we observe that (iv) in
Theorem 2.1 and Proposition 2.2 ensure that for HN−1- a.e. y ∈ Ωξ it results ([uξy])(t) = ([u] · ξ)(y + tξ) for
every t ∈ Juξy and ([uhξy])(t) = ([uh] · ξ)(y + tξ) for every t ∈ Juhξy , with uξy, uh

ξ
y ∈ SBV (Ωξy) for HN−1-a.e.

y ∈ Ωξ.
On the other hand, by (2.7) and (2.8), it results that∫

Ju

|ξ · νu|ψ(|[u](y) · ξ|)dHN−1(y) =
∫
Jξu

|ξ · νu|ψ(|[u](y) · ξ|)dHN−1(y),∫
Juh

|ξ · νuh |ψ(|[uh](y) · ξ|)dHN−1(y) =
∫
Jξuh

|ξ · νuh |ψ(|[uh](y) · ξ|)dHN−1(y)
(3.3)

for every h ∈ N and for HN−1-a.e. ξ ∈ SN−1. Formulas (3.3), (2.10) guarantee that there exists N ⊂ SN−1

such that HN−1(N) = 0 and it results:∫
Ju

|ξ · νu|ψ(|[u](y) · ξ|)dHN−1(y) =
∫

Ωξ

[ ∫
J
u
ξ
y

ψ(|[uξy]|(t))dH0(t)
]
dHN−1(y),

and ∫
Juh

|ξ · νuh |ψ(|[uh](y) · ξ|)dHN−1(y) =
∫

Ωξ

[ ∫
J
uh
ξ
y

ψ(|[uhξy]|(t))dH0(t)
]
dHN−1(y),

for every h ∈ N and for every ξ ∈ SN−1 \N .
Consequently the proof will be completed once we show that∫

Ωξ

[ ∫
J
u
ξ
y

ψ(|[uξy]|(t))dH0(t)
]
dHN−1(y) ≤ lim inf

h→+∞

∫
Ωξ

[ ∫
J
uh
ξ
y

ψ(|[uhξy]|(t))dH0(t)
]
dHN−1(y) (3.4)

for every ξ ∈ SN−1 \N .
To this end, for each ξ ∈ SN−1 \N consider a subsequence {uk} ≡ {uhk} such that

lim inf
h→+∞

∫
J
uh
ξ
y

ψ(|[uhξy]|(t))dH0(t) = lim
k→+∞

∫
J
uk
ξ
y

ψ(|[ukξy]|(t))dH0(t). (3.5)

Next consider a further subsequence (denoted by {uj} ≡ {ukj}) such that

lim
j→+∞

HN−1(Juj ) = lim inf
k→+∞

HN−1(Juk). (3.6)

We want to show that the assumptions of Lemma 3.1 are satisfied. Let Iy,ξ(uj) =
∫

Ωξy
θ(|u′j

ξ

y
(t)|)dt, where

uj
ξ
y(t) = uj(y + tξ) · ξ. From (ii) in Theorem 2.1 (i.e. Euj(y + tξ) · ξ = (ujξ)′y(t) for HN−1-a.e. y ∈ Ωξ and

for L1-a.e. t ∈ Ωξy) and from Fubini-Tonelli’s theorem, for any ξ ∈ SN−1 \N we have∫
πξ

Iy,ξ(uj)dHN−1(y) =
∫

Ω

θ(|Euj(x)ξ · ξ|)dx.

Since {uj} satisfies the bound (2.12) and θ is non-decreasing, it follows that∫
πξ

Iy,ξ(uj)dHN−1(y) ≤
∫

Ω

θ(|Euj(x)|)dx ≤ K, (3.7)

for every ξ ∈ SN−1 \N and for HN−1-a.e. y ∈ Ωξ. It is also easily seen that, from the bound on ‖uj‖L∞ ,
deriving from the global bound (2.12),

‖ujξy‖L∞(Ωξy) ≤ K. (3.8)
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From Theorem 2.4, (3.7) and (3.8) and Fatou’s lemma, for every ξ ∈ SN−1 \N it results that there exists a
constant C ≡ C(K) such that

lim inf
j→+∞

∫
πξ

[Iy,ξ(uj) +H0(Jujξy )]dHN−1(y) ≤ C < +∞.

Let us fix ξ ∈ SN−1 \ N (such that the previous inequality holds). Using Fubini-Tonelli’s theorem we can
extract a subsequence {um} = {ujm} (depending on ξ) such that

lim
m→+∞

∫
πξ

[Iy,ξ(um) +H0(Jumξy )]dHN−1(y) =

lim inf
j→+∞

∫
πξ

[Iy,ξ(uj) +H0(Jujξy )]dHN−1(y) ≤ C < +∞,
(3.9)

and for a.e. y ∈ Ωξ, uξm,y ∈ SBV (Ωξy) and um
ξ
y → uξy in L1

loc(Ω
ξ
y), with uξy ∈ SBV (Ωξy).

Let ξ ∈ SN−1 \N , by (3.9), Fatou’s lemma, for HN−1-a.e. y ∈ Ωξ, it results

lim inf
m→+∞

[Iy,ξ(um) +H0(Jumξy )] < +∞. (3.10)

Let us fix NΩξ ⊂ Ωξ and a point y ∈ Ωξ \NΩξ , such that HN−1(NΩξ) = 0, (3.10) and (3.8) hold and such
that umξy ∈ SBV (Ωξy) for any m. Passing to a further subsequence {ul} ≡ {uml} we can assume that there
exists a constant C ′ such that

lim inf
m→+∞

[Iy,ξ(um) +H0(Jumξy )] = lim
l→+∞

[Iy,ξ(ul) +H0(Julξy )] ≤ C ′.

This means that {ulξy} ∈ SBV (Ωξy) and satisfies all the assumptions of Lemma 3.1 for each interval
(connected component) I ⊂ Ωξy. Consequently (3.5) and Lemma 3.1 guarantee that∫

J
u
ξ
y

ψ(|[uξy]|(t))dH0(t) ≤ lim
l→+∞

∫
J
ul
ξ
y

ψ(|[ulξy]|(t))dH0(t) = lim inf
h→+∞

∫
J
uh
ξ
y

ψ(|[uhξy]|(t))dH0(t) (3.11)

for HN−1-a.e. ξ ∈ SN−1 and for HN−1-a.e. y ∈ Ωξ.
The lower semicontinuity stated in (3.4) follows now from Fatou’s lemma, which completes the proof.

In order to prove the main lower semicontinuity theorem with respect to convergence (2.13) ÷ (2.16),
we need to apply Lemma 2.8, to the class of functions in (1.4), exploiting also some other properties of the
infimal convolutions as in the Lemma below.

Lemma 3.4. Let ψ : [0,+∞[→ [0,+∞] be a lower semicontinuous function. Define for t > 0

ψt(x) := inf {ψ(y) + t|x− y| : y ∈ [0,+∞[} . (3.12)

Then

(i) if ψ is subadditive, nondecreasing then ψt ≤ ψ, ψt is continuous, subadditive and nondecreasing and
ψt(x) ↑ ψ(x) as t ↑ +∞.

Let ψ : RN → [0,+∞], not identically +∞, and let

ψt(x) := inf
y∈RN

{
ψ(y) + td(x, y), y ∈ RN

}
.

(ii) if ψ depends just on the modulus of x, and the function x ∈ RN → ψ(‖x‖) is subadditive, then ψt ≤ ψ,
ψt is continuous, the function x ∈ RN → ψt(‖x‖) is subadditive and ψt(x) ↑ ψ(x) as t ↑ +∞.

We remark that in (ii) we set, with a notational abuse, ψ(x) = ψ(‖x‖) and similarly for ψt.
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Proof. The proof is analogous to that of Lemma 2.8, with small modifications. In fact, the continuity of
ψt, the fact that 0 ≤ ψt ≤ ψ and ψt(x) ↑ ψ(x) as t ↑ +∞ follow from Lemma 2.8. For what concerns
the subadditivity, observe that given any function Φ : (x, y) ∈ X × Y → Φ(x, y) ∈ R (with X and Y
closed to addition) which is subadditive in the couple (x, y), then the function φ(x) := infy∈Y Φ(x, y) is still
subadditive in x. Indeed, let x1, x2 ∈ X, then φ(x1 + x2) ≤ Φ(x1 + x2, y1 + y2) ≤ Φ(x1, y1) + Φ(x2, y2) for
every y1, y2 ∈ Y . Since y1 and y2 are arbitrary we may pass to the infimum on both terms in the right hand
side and obtain

φ(x1 + x2) ≤ φ(x1) + φ(x2).

The above considerations apply to the functions Φ(x, y) := ψ(y) + td(x, y), d being the Euclidean metric.
The other properties may be proved as follows.

(i) Let (·)+ : x ∈ R→ [0,+∞[ be the function defined as

(x)+ :=
{
x if x > 0,
0 otherwise.

Clearly (·)+ is continuous, nondecreasing and subadditive. The monotonicity of ψ guarantees that
(3.12) can be equivalently written as

ψt(x) = inf
{
ψ(y) + t(x− y)+ : y ∈ [0,+∞[

}
(3.13)

Thus the nondecreasing behavior of ψt follows by (3.13).

(ii) Finally it easily verified that if ψ(Ox) = ψ(x) for every orthogonal matrix O and for every x ∈ RN ,
then the same invariance is inherited by ψt. Consequently if ψ(·) = ψ(‖ · ‖) and it is subadditive, the
same holds for ψt.

Now we are in position to prove Theorem 1.2.

Proof of Theorem 1.2. (1.2) has been proved in [11] (cf. Lemma 3.1 therein). It remains to prove (1.5). To
this end assume first that the function ψ in (1.4) is continuous and ψ(| · |) is subadditive. Indeed, if Ψ is as in
(1.4), as observed in Remark 4.3, the continuity of ψ allows us to assume ξ in (1.4) varying in any countable
subset of SN−1. It will be chosen in SN−1 \N , N being the HN−1 exceptional set introduced in Lemma 3.3,
and it will be denoted by A, with elements ξα. On the other hand, as already observed in Remark 3.2 any
function ψ subadditive and nondecreasing is such that ψ(| · |) is subadditive.

By superadditivity of liminf:

lim inf
h→+∞

∫
Juh

Ψ([uh], νuh)dHN−1 ≥
∑
α

lim inf
h→+∞

∫
Juh∩Aα

|ξα · νuh |ψ(|ξα · [uh]|)dHN−1

for any finite family of pairwise disjoint open sets Aα ⊂ Ω.
By Lemma 3.3 we have

lim inf
h→+∞

∫
Juh

|ξα · νuh |ψ(|ξα · [uh]|)dHN−1 ≥
∫
Ju∩Aα

|ξα · νu|ψ(|ξα · [u]|)dHN−1

for every ξα ∈ A. Therefore

lim inf
h→+∞

∫
Juh

Ψ([uh], νuh)dHN−1 ≥
∑
α

∫
Ju∩Aα

|ξα · νu|ψ(|ξα · [u]|)dHN−1

for every ξα ∈ A and for any finite family of pairwise disjoint open sets Aα ⊂ Ω.
By Theorem 2.6 we can interchange integration and supremum over all such families, thus getting

lim inf
h→+∞

∫
Juh

Ψ([uh], νuh)dHN−1 ≥
∫
Ju

Ψ([u], νu)dHN−1,
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whence (1.5) follows.
For what concerns the general case, i.e. ψ lower semicontinuous, (ii) of Lemma 3.4 ensures that any

lower semicontinuous function ψ such that ψ(| · |) is subadditive can be seen as the supremum of a countable
family of continuous functions ψt, such that ψt(| · |) is still subadditive.

Let {ψn} be such a family, i.e. ψ(t) = supn∈N ψn(t) , for every t ∈ [0,+∞[, with {ψn} non decreasing in
n. Furthermore, for every n ∈ N, let Ψn : RN × SN−1 → [0,+∞[ be the functional defined by

Ψn(a, b) := sup
ξ∈SN−1

|b · ξ|ψn(|a · ξ|). (3.14)

Clearly,
Ψ(a, b) = sup

n∈N
Ψn(a, b). (3.15)

Since each supremum is actually a monotone limit, monotone convergence theorem gives∫
Ju

Ψ([u], νu)dHN−1 = lim
n→+∞

∫
Ju

Ψn([u], νu)dHN−1.

On the other hand, the first part of the proof ensures that each functional
∫
Ju

Ψn([u], νu)dHN−1 is
sequentially lower semicontinuous with respect to the L1- strong convergence along all the sequences {uh} ⊂
SBD(Ω) satisfying the bound (2.12), so that∫

Ju

Ψ([u], νu)dHN−1 ≤ lim inf
h→+∞

∫
Juh

Ψ([uh], νuh)dHN−1,

which concludes the proof.

Remark 3.5. We observe, as already enlightened in the proof, that Theorem 1.2 holds just by assuming
that the function ψ : [0,+∞[→ [0,+∞[ is lower semicontinuous and the function x ∈ RN → ψ(‖x‖) is
subadditive. Typical examples of non monotonic functions with this property are ψ(t) = | sin t|, (N = 1) and
any ψ with 1 ≤ ψ(t) ≤ 2, (N ≥ 1), ψ continuous, bounded and ψ(0) = 0.

Consequently, as emphasized in Remark 3.2 the results apply to the class of functions ψ : [0,+∞[→
[0,+∞[, lower semicontinuous, nondecreasing and subadditive, relevant for the applications to Continuum
Mechanics.

Finally, we emphasize that Theorem 1.2 still holds with obvious adaptations if one replaces the integrand
Ψ in (1.4) by

Ψ(a, b) := sup
ξ∈SN−1

|b · ξ|ψξ(|a · ξ|),

with ψξ : [0,+∞[→ [0,+∞[ continuously depending on ξ ∈ SN−1, nondecreasing, subadditive.

4 Structure properties of the energy densities

This section is devoted to illustrate the properties of the energy density Ψ defined in (1.4).

Proposition 4.1. Let Ψ be defined by formula (1.4) with ψ : [0,+∞[→ [0,+∞[, and such that the function
t ∈ [0,+∞[→ tψ(t) is nondecreasing in [0,+∞[. Then it results

ψ(t) = Ψ(tb, b) (4.1)

for every b ∈ SN−1 and for every t ≥ 0.

Proof. Let b ∈ SN−1 and t ≥ 0. From (1.4) it follows

Ψ(tb, b) = sup
ξ∈SN−1

|b · ξ|ψ(|tb · ξ|) = sup
0≤s≤1

sψ(ts) (4.2)

It is easily seen that if the function t ∈ [0,+∞[→ tψ(t) is nondecreasing then the right hand side of (4.2)
coincides with ψ(t) and that concludes the proof.
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Clearly Ψ inherits many of the properties of ψ.

Proposition 4.2. Let Ψ be defined by formula (1.4) with ψ : [0,+∞[→ [0,+∞[, then the following properties
hold.

(i)
Ψ(Oa,Ob) = Ψ(a, b) (4.3)

for every orthogonal matrix O ∈ RN×N , a ∈ RN and b ∈ SN−1.

(ii) Ψ(a, ·) is an even function, i.e. for every a ∈ RN

Ψ(a, b) = Ψ(a,−b)

for every b ∈ SN−1 and,
Ψ(a, b) = Ψ(−a, b)

for every a ∈ RN .

(iii) If ψ is lower semicontinuous, then Ψ is lower semicontinuous on RN × SN−1,

(iv) If ψ is subadditive, then Ψ(·, b) is subadditive for every b ∈ SN−1.

(v) If ψ is continuous (or Lipschitz), then Ψ is continuous on RN ×SN−1 (or Ψ(·, b) is Lipschitz for every
b ∈ SN−1. The local Lipschitz property of Ψ easily follows).

(vi) If ψ is convex so is Ψ(·, b) for every b ∈ SN−1.

(vii) If ψ is bounded, Ψ is also bounded on RN × SN−1.

(viii) If ψ is nondecreasing, then the function t ∈ [0,+∞[→ Ψ(ta, b) is nondecreasing for every a ∈ RN and
for every b ∈ SN−1.

(ix) Ψ(a, b) = 0 if and only if ψ(t) = 0 for every t ∈ [0, |a|], at least if ψ is continuous.

(x) Ψ(a, ·) is the restriction to SN−1 of a seminorm on RN .

In particular, if the function t ∈ [0,+∞[→ tψ(t) is nondecreasing, then Ψ is lower semicontinuous (re-
spectively subadditive, continuous, Lipschitz, convex, bounded, nondecreasing) if and only if ψ shares the
corresponding properties.

Proof. For what concerns (i) we observe that

Ψ(Oa,Ob) = sup
ξ∈SN−1

|Ob · ξ|ψ(|Oa · ξ|) = sup
η∈SN−1

|Ob ·Oη|ψ(|Oa ·Oη|) = sup
η∈SN−1

|b · η|ψ(|a · η|)

= sup
ξ∈SN−1

|b · ξ|ψ(|a · ξ|) = Ψ(a, b),

for every orthogonal matrix O ∈ RN×N , and for every (a, b) ∈ RN × SN−1.
(ii) is analogous and immediate from (1.4). (iii), (iv), (vi), (vii), (viii) follow from the closure to supremum

of the corresponding properties. Concerning (v) we only need to add the further remark that the function
Ψ(·, b) is the supremum of uniformly equicontinuous (respectively, uniformly Lispchitz) functions. (ix) follows
obviously from (1.4) if ψ is continuous, since the set of ξ where b · ξ 6= 0 is dense. The general case (which
differs only for a, b parallel or orthogonal) can be treated by proceeding as in Theorem 4.4 below. To prove
(x) just observe that Ψ(a, cdot) is the supremum of a family of seminorms restricted to SN−1. Finally, the
last statement is a consequence of Proposition 4.1.

Remark 4.3. We observe that if ψ is continuous, the supremum in (1.4) can be taken over any dense
countable family of SN−1, this property may fail if ψ is not continuous (e.g. upper semicontinuous will not
do in general).
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Theorem 4.4. Let ψ : [0,+∞[→ [0,+∞[ and let Ψ : RN × SN−1 → [0,+∞[ be as in (1.4). Then there
exists a unique function ψ̃ : [0,+∞[→ [0,+∞[ such that the function t ∈ [0,+∞[→ tψ̃(t) is nondecreasing
and

Ψ(a, b) = sup
ξ∈SN−1

|b · ξ|ψ̃(|a · ξ|). (4.4)

Proof. Let Ψ be as in (1.4) and ψ a nonnegative function, then by (ii) of Proposition 4.2 we may further
assume that a · b ≥ 0. Without loss of generality, by (i) of Proposition 4.2, we may assume a := re1, r > 0,
and b = cos γe1 + sin γe2, {e1, e2, . . . , eN} being the canonical basis in RN , γ ∈

[
0, π2

]
the angle between a

and b. Consequently, (1.4) becomes

Ψ(a, b) = sup
ξ∈SN−1

ψ(|rξ1|)(ξ1 cos γ + ξ2 sin γ),

where ξ1 and ξ2 are the first two components of ξ. Now, by virtue of the monotonicity in the right hand side
in the variables ξ2, cos γ and sin γ, since ψ ≥ 0, the above maximum problem becomes

sup
ξ2
1 + ξ2

2 ≤ 1
ξ1, ξ2 ≥ 0

ψ(rξ1)(ξ1 cos γ + ξ2 sin γ) =

sup
0≤s≤1

sup
x2 + y2 = 1
x, y ≥ 0

sψ(rsx)(x cos γ + y sin γ) =

sup
x2 + y2 = 1
x, y ≥ 0

ψ̃(rx)(x cos γ + y sin γ) =

sup
ξ2
1 + ξ2

2 ≤ 1
ξ1, ξ2 ≥ 0

ψ̃(rξ1)(ξ1 cos γ + ξ2 sin γ)

where
ψ̃(u) = sup

0≤s≤1
sψ(su). (4.5)

Thus Ψ can be equivalently obtained by (4.4) and it is easily seen that the function t ∈ [0,+∞[→ tψ̃(t) is
nondecreasing in [0,+∞[.
Finally uniqueness of ψ̃ follows from Proposition 4.1.

Propositions 4.1, 4.2 and Theorem 4.4 allow us to characterize function Ψ in (1.4), as summarized in the
following.

Theorem 4.5. Let Ψ : RN × SN−1 → [0,+∞[ then

(E) there exists ψ : [0,+∞[→ [0,+∞[ such that (1.4) holds if and only if

Ψ(a, b) = sup
ξ∈SN−1

|b · ξ|Ψ(|a · ξ|e, e) (4.6)

for any e ∈ SN−1.

(U) The function ψ in (1.4) is unique among the class of functions such that (·)ψ(·) is nondecreasing.

Proof. (E): (4.6) trivially entails (1.4). The necessary part follows from (4.2) in Proposition 4.1, (4.4) and
(4.5) in Theorem 4.4.

(U) has been stated and proved in Theorem 4.4. We also observe that by (4.5) and (4.1), ψ̃ is also the
maximum function which recovers representation (1.4).
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Remark 4.6. We also observe that Theorem 4.5 and Theorem 4.4 provide a complete characterization also
in the light of Theorem 1.2. In fact assuming that Ψ is lower semicontinuous, Ψ(·, b) is subadditive for
every b ∈ RN , and t ∈ [0,+∞[→ Ψ(ta, b) is nondecreasing for every (a, b) ∈ RN × SN−1, then (4.5), (4.2),
guarantee that the function ψ̃ shares the same properties, i.e. it is lower semicontinuos, subadditive and
nondecreasing.

Examples 4.7. We show the expression of the function Ψ in (1.4) for some prescribed ψ.

(i) Consider first the model in [5, 6]: ψconst : t ∈ [0,+∞[→ K, K > 0. It is easily seen that ψconst leads
to Ψconst : (a, b) ∈ RN × SN−1 → K.

In the subsequent analysis we may limit, by symmetry (Ψ(a, b) = Ψ(a,−b)), our attention to the set {(a, b) ∈
RN × SN−1|a · b ≥ 0}. Moreover in the Continuum Mechanics setting, a and b play the role of the jump [u]
and the normal to the jump νu respectively, while the noninterprenetration constraint (1.2) corresponds to
the latter set.

(ii) Let ψlin(t) = Ct, for every t ∈ [0,+∞[, then Ψlin(a, b) = C
2 (a·b+|a||b|), and observe that the maximum

value in formula (1.4) is reached on the bisector of the angle between a and b.

(iii) Let ψD be the Dugdale function in (3.1), the function ΨD in (1.4) turns out to be the following:

ΨD(a, b) =


1
2 |a| (cos γ + 1) if |a| ≤ 1

cos( γ2 ) ,
cos γ
|a| + sin γ

√
1− 1

|a|2 if 1

cos( γ2 ) < |a| ≤
1

cos γ ,

1 if |a| ≥ 1
cos γ

where γ denotes the angle between a and b (i.e. cos(γ) = a·b
|a||b|). We also observe that, in the case of

the Dugdale function, if the deformations are small (|a| := |[u]| ≤ 1) the function ΨD, obtained from
(1.4) is described just by the first line above, i.e. it agrees with example (ii), while in the third regime
it agrees with case (i).

(iv) ψ : t ∈ [0,+∞[→ |t|p, with p ∈ (0, 1), then for every a and b, with b ∈ SN−1, a · b ≥ 0.

Ψ(a, b) = |a|p
1 +

tan2[ 1
2arctan

(
2
√
p tan γ

p+1

)
]

p


−p
2 (

1 + p tan2

[
1
2

arctan
(

2
√
p tan γ
p+ 1

)])−1
2

where γ again denotes the angle between a and b.

It can be easily verified that for p ↗ 1 we recover the example (ii) with C = 1. Clearly if a ⊥ b, then
Ψ(a, b) = |a|pp

p
2 (1 + p)−

p+1
2 . Also if a‖b, then Ψ(a, b) = |a|p in agreement with Proposition 4.1.

Remark 4.8. The analysis on the properties of the function Ψ in (1.4) leads us to observe that the results
contained in Theorem 1.2 are not merely an extension of our previous results on SBD contained in [11].
Indeed in [11] we deal with the lower semicontinuity of

∫
Ju
ϕ([u] · νu)dHN−1, [u] · νu ≥ 0 HN−1-a.e. on Ju,

with ϕ : [0,+∞[→ [0,+∞[ nondecreasing, convex and subadditive (see (1.1)). We prove that there is lower
semicontinuity with respect to convergences (2.13) ÷ (2.16), by assuming

ϕ(t) = sup
α∈A
{cαt+ dα}, (4.7)

with cα, dα ≥ 0. On the other hand, the results contained in Theorem 1.2 concern
∫
Ju

Ψ([u], νu)dHN−1,
[u] ·νu ≥ 0 HN−1-a.e. on Ju, with Ψ : (a, b) ∈ RN ×SN−1 → supξ∈SN−1 |b ·ξ|ψ(|a ·ξ|), with ψ nondecreasing,
lower semicontinuous, subadditive.
Thus, it is natural to characterize the intersection among the two classes of Theorems 1.1 and 1.2.
Therefore we seek ψ such that

sup
ξ∈SN−1

|b · ξ|ψ(|a · ξ|) = ϕ(a · b)
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for every a ∈ RN , b ∈ SN−1 and a · b ≥ 0. By (4.1) and Theorem 4.4 we may assume

ψ(t) = ϕ(t), for every t ∈ [0,+∞[,

so that
ϕ (a · b) = sup

ξ∈SN−1
|b · ξ|ϕ(|a · ξ|) for every (a, b) ∈ RN × SN−1.

which implies
ϕ(a · b) ≥ ϕ(|a · ξ|)|b · ξ|, for every a ∈ RN , b, ξ ∈ SN−1, a · b ≥ 0. (4.8)

Taking 0 ≤ x, y ≤ r, (t, s) = 1
r (x, y), a = re1, b = te1 +

√
1− t2e2, ξ = se1 +

√
1− s2e2, {e1, e2, . . . , eN}

the canonical basis of RN , and letting r → +∞ we obtain by (4.8)

ϕ(x) ≥ ϕ(y), for every x, y ≥ 0,

which ensures that ϕ has to be constant.

By the same token, if Ψ depends only on |a|, we see that ψ̃ in (4.5) is either a constant or has the form

ψ̃(t) =
{
α t = 0,
β(> α) t > 0.

and

Ψ(a, b) =
{
α a = 0,
β a 6= 0.

Therefore, while the symmetry property (4.3) means that Ψ depends only on a · b and |a| (angle between the
jump and the normal to the jump and amplitude of the jump), only ‘trivial’ models for Ψ yield a dependence
on a single such parameter.
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