ЛЕКЦИИ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ ДЛЯ СТУДЕНТОВ МОиАИС 1-Й СЕМЕСТР ГРАЖДАНЦЕВА Е.Ю.

Глава 1

Исследование функции одной переменной

1.1 Признаки возрастания и убывания.

Определение. Функция f(x), определенная на отрезке [a,b], называется неубывающей на нем, если для любых точек x_1, x_2 из отрезка [a,b] таких, что $x_1 < x_2$, справедливо неравенство $f(x_1) \le f(x_2)$.

Определение. Функция f(x), определенная на отрезке [a,b], называется невозрастающей на нем, если для любых точек x_1, x_2 из отрезка [a,b] таких, что $x_1 < x_2$, справедливо неравенство $f(x_1) \ge f(x_2)$.

Определение. Функция f(x), определенная на отрезке [a,b], называется возрастающей на нем, если для любых точек x_1, x_2 , из отрезка [a,b], таких, что $x_1 < x_2$, справедливо неравенство $f(x_1) < f(x_2)$.

Определение. Функция f(x), определенная на отрезке [a,b], называется убывающей на нем, если для любых точек x_1, x_2 , из отрезка [a,b], таких, что $x_1 < x_2$, справедливо неравенство $f(x_1) > f(x_2)$.

Определение. Функция f(x), определенная на отрезке [a,b], называется монотонной на нем, если она на этом отрезке только неубывающая, или только невозрастающая.

Определение. Функция f(x), определенная на отрезке [a,b], называется строго монотонной на нем, если она на этом отрезке только

возрастающая, или только убывающая.

Теорема 1. Пусть

- 1) функция f(x), непрерывна на отрезке [a, b],
- 2) существует f'(x), по крайней мере, на (a,b).

Чтобы функция f(x) на отрезке [a,b] была неубывающей, необходимо и достаточно, чтобы $f'(x) \ge 0 \ \forall x \in (a,b)$.

Доказательство. (\Rightarrow) Пусть функция f(x) на отрезке [a,b] неубывающая. Возьмем $x\in(a,b)$. Так как f(x) неубывающая, то $\forall \Delta x$ знак Δx и Δf одинаков. Следовательно, $\frac{f(x+\Delta x)-f(x)}{\Delta x}\geq 0$.

Поскольку
$$\exists f'(x) \ \forall x \in (a,b)$$
, то $f'(x) = \lim_{\Delta x \to 0} \frac{f(x+\Delta x) - f(x)}{\Delta x} \ge 0$.

(\Leftarrow) Пусть $f'(x) \geq 0$ на (a,b) и пусть $x_1 < x_2 \ \forall x \in [a,b]$. По теореме Лагранжа

$$f(x_2) - f(x_1) = f'(\xi)(x_2 - x_1), \ \xi \in (x_1, x_2).$$

Так как $f'(x) \ge 0 \ \forall x \in (a,b)$, то $f'(\xi) \ge 0$. Поскльку $x_1 < x_2$, то $f(x_2) - f(x_1) \ge 0$. Т.е. $f(x_2) \ge f(x_1)$, следовательно f(x) – неубывающая. Теорема доказана.

Теорема 2. Пусть

- 1) функция f(x), непрерывна на отрезке [a, b],
- 2) существует f'(x), по крайней мере, на (a,b).

Чтобы функция f(x) на отрезке [a,b] была невозрастающей, необходимо и достаточно, чтобы $f'(x) \leq 0 \ \forall x \in (a,b)$.

Доказательство. доказательство теоремы аналогично доказательству теоремы 1.

Таким образом, интервалы знакопостоянства f'(x) являются интервалами монотонности f(x).

Утверждение (достаточные условия возрастания и убывания функции. Если $f'(x) > 0 \ \forall x \in (a,b)$, то f(x) возрастает на отрезке [a,b]; если $f'(x) < 0 \ \forall x \in (a,b)$, то f(x) убывает на отрезке [a,b].

Замечание. Утверждение работает в одну сторону.

Пример. $f(x) = x^3$ возрастает на [-1, 1], но $f'(x) = 3x^2 = 0$ при x = 0.

Определение. Функция f(x) называется возростающей в точке $x = x_0$, если $\exists U_{\delta}(x_0)$ такая, что $\forall x \in U_{\delta}(x_0)$, удовлетворющих неравентсву $x < x_0$, справедливо $f(x) < f(x_0)$, и $\forall x \in U_{\delta}(x_0)$, удовлетворяющих неравенству $x > x_0$, справедливо $f(x) > f(x_0)$.

Определение. Функция f(x) называется убывающей в точке $x = x_0$, если $\exists U_{\delta}(x_0)$ такая, что $\forall x \in U_{\delta}(x_0)$, удовлетворющих неравентсву $x < x_0$, справедливо $f(x) > f(x_0)$, и $\forall x \in U_{\delta}(x_0)$, удовлетворяющих неравенству $x > x_0$, справедливо $f(x) < f(x_0)$.

Теорема (Достаточные условия возрастания и убывания в точке. Пусть существует $f'(x_0)$. Если $f'(x_0) > 0$, то f(x) возрастает в точке $x = x_0$; если $f'(x_0) < 0$, то f(x) убывает в точке $x = x_0$.

Доказательство. Пусть существует $f'(x_0) > 0$. Тогда

$$\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} > 0.$$

Следовательно, $\exists \delta > 0$ такая, что $\forall \Delta x$, удовлетворяющих неравенству $0 < |\Delta x| < \delta$, верно неравенство

$$\frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} > 0.$$

Т.е. величины Δx и $\Delta f(x_0)$ имеют одинаковый знак. Следовательно, если $\Delta x < 0$, то $f(x_0 + \Delta x) - f(x_0) < 0$ т.е. $f(x_0 + \Delta x) < f(x_0)$; а если $\Delta x > 0$, то $f(x_0 + \Delta x) - f(x_0) > 0$ т.е. $f(x_0 + \Delta x) > f(x_0)$,

Таким образом функция $f(x_0)$ возрастает, т.е. f(x) возрастает в точке $x=x_0$.

Аналогично доказывается и убывание функциии f(x) в точке $x = x_0$. Теорема доказана.

1.2 Экстремум функции.

Пусть f(x) определена в окрестности $U(x_0)$ точки x_0 включая x_0 .

Определение. Точка $x = x_0$ называется точкой локального максимума, если $\exists \delta > 0$ такая, что $\forall x \in U_{\delta}(x_0)$ справедливо $\Delta f = f(x) - f(x_0) \leq 0$, т.е. $f(x) \leq f(x_0)$.

Определение. Точка $x = x_0$ называется точкой локального минимума, если $\exists \delta > 0$ такая, что $\forall x \in U_{\delta}(x_0)$ справедливо $\Delta f = f(x) - f(x_0) \geq 0$, т.е. $f(x) \geq f(x_0)$.

Определение. Значение $f(x_0)$ называется локальным максимумом функции f(x) если точка x_0 является точкой локального максимума.

Определение.Значение $f(x_0)$ называется локальным минимумом функции f(x) если точка x_0 является точкой локального минимума.

Определение. Локальные максимум и минимум функции называются локальными экстремумами функции.

Определение. Точка $x = x_0$ называется точкой строгого максимума (минимума) функции f(x) если $\exists \delta > 0$ такое, что $\forall x$, удовлетворяющих неравенству $0 < |x - x_0| < \delta$, выполняется $f(x) - f(x_0) < 0$ ($f(x) - f(x_0)$, соответственно). При этом значение $f(x_0)$ называется строгим максимумом (минимумом) соответственно.

Замечание. Здесь не предполагается непрерывности функции f(x) в точке $x=x_0$.

Пример. Функция $f(x) = \begin{cases} x^2, & x \neq 0, \\ 1, & x = 0 \end{cases}$ в точке x = 0 имеет разрыв и локальный максимум, так как f(x) - f(0) = f(x) - 1 < 0, $\forall x \in (-1,1).$

Теорема (необходимое условие экстремума). Если функция f(x) имеет экстремум в точке $x = x_0$, то $f'(x_0) = 0$ либо $\nexists f'(x_0)$.

Доказательство. Пусть существует $\exists f'(x_0) \neq 0$. Для определенности, пусть $f'(x_0) > 0$. Тогда функция f(x) возрастает в точке x_0 и, следовательно, существует $\delta > 0$ такая, что $\forall x \in (x_0 - \delta, x_0)$ справедливо неравенство $f(x) < f(x_0)$, а $\forall x \in (x_0, x_0 + \delta)$ справедливо неравенство $f(x) > f(x_0)$. Следовательно, не существует окрестности $U(x_0)$ такой, что $\forall x \in U(x_0)$ $f(x_0) > f(x)$, или $f(x_0) < f(x)$. Получаем, что точка $x = x_0$ не является точкое экстремума.

Аналогично, при $f'(x_0) < 0$ точка $x = x_0$ не является точкой экстремума. Таким образом, получили противоречие предположению. Теорема доказана.

Определение. Точки экстремума называются критическими точками функции.

Определение. Корни уравнения f'(x) = 0 нвзываются стационарными точками функции f(x).

Замечание. Не всякая критическая точка является точкой экстремума.

Пример. Для функции $f(x) = x^3$ имеем f'(0) = 0, т.е. точка x = 0 – критическая точка, однако, она не является точкой экстемума.

Теорема (достаточные условия экстемума). Пусть

- 1) точка $x=x_0$ критическая точка функции f(x) т.е. $f'(x_0)=0$ либо $\nexists f'(x_0),$
 - 2) функция f(x) непрерывнав точке x_0 . Тогда
 - 1) если $\exists \delta > 0$ такое, что $\forall \in (x_0 \delta, x_0)$ f'(x) > 0 и $\forall \in (x_0, x_0 + \delta)$
- f'(x) < 0, то точка x_0 точка локального максимума функции f(x);
 - 2) если $\exists \delta > 0$ такое, что $\forall \in (x_0 \delta, x_0)$ f'(x) < 0 и $\forall \in (x_0, x_0 + \delta)$
- f'(x) > 0, то точка x_0 точка локального минимума функции f(x).

Доказательство. По условию $f'(x) > 0 \ \forall x \in (x_0 - \delta, x_0)$, следовательно функция f(x) возрастает на отрезке $[x_0 - \delta, x_0]$.

Так как $f'(x) < 0 \ \forall x \in (x_0, x_0 + \delta)$, то функция f(x) убывает на

отрезке $[x_0, x_0 + \delta]$.

Таким образом, значение $f(x_0)$ – наибольшее значение функции $f(x) \, \forall x \in U_{\delta}(X_0)$. Следовательно, x_0 – точка локального максимума функции f(x), $f(x_0)$ – локальный максимум этой функции.

Случай 2) доказывается аналогично. Теорема доказана.

Замечание. Условие непрерывности функции существенно.

Определение. Множество $X \in R$ такое, что $\forall x \in X$ f'(x) > 0 называется множеством (интервалом) возрастания функции f(x). Определение. Множество $X \in R$ такое, что $\forall x \in X$ f'(x) < 0 называется множеством (интервалом) убывания функции f(x).

Правило отыскания экстремума.

- 1)Найти критические точки, т.е.
- а) найти стационарные точки (решить уравнение f'(x) = 0)
- б) Найти точки, в которых $\sharp f'(x);$
- 2) Определить знак f'(x) с обеих сторон от каждой критической точки;
- 3) Сделать вывод, используя теорему о достаточных условиях экстремума.

Пример 1. Исследовть на экстремум функцию $y = x^2 e^{-x}$.

Решение. 1) Найдем критические точки:

 $y^{'}=0 \Leftrightarrow xe^{-x}(2-x)=0 \Rightarrow x_1=0, \ x_2=2.$ Таким образом, точки $x_1=0, \ x_2=2$ – критические.

2) Определим знак $y = x^2 e^{-x}$ с обеих сторон от каждой критической точки:

$$y'(x) > 0 \ \forall x \in (0, 2),$$

 $y'(x) < 0 \ \forall x \in (-\infty, 0) \cup (2, +\infty).$

Следовательно, функция возрастает при $x \in (0,2)$, и убывает при $x \in (-\infty,0) \cup (2,+\infty)$.

3) Согласно теореме о достаточных условиях экстремума $x_1 = 0$

– точка локального минимума функции, а $f(x_1)=0$ – локальный минимум; $x_2=2$ – точка локального максимума функции, а $f(x_2)=4e^{-2}$ – локальный максимум.

Пример 2. Исследовть на экстремум функцию $y = x^{\frac{2}{3}}$.

Решение. 1) Найдем критические точки:

 $y^{'}=0 \Leftrightarrow \frac{2}{3}\cdot x^{-\frac{2}{3}}=0$ — это уравнение решения не имеет и $y^{'}$ не определено при x=0. Таким образом, точка x=0 — критическая.

2) Определим знак функции с обеих сторон от этой критической точки:

$$y'(x) < 0 \ \forall x \in (-\infty, 0).$$

$$y'(x) > 0 \ \forall x \in (0, +\infty),$$

Следовательно, функция убывает при $x \in (-\infty, 0)$, и возрастает при $x \in (0, +\infty)$.

3) Согласно теореме о достаточных условиях экстремума x=0 – точка локального минимума функции, а f(x=0)=0 – локальный минимум.

Исследование на экстремум при помощи второй производной.

Теорема. Пусть существуют $f'(x_0)$ и $f''(x_0)$, и $f'(x_0) = 0$, $f''(x_0) \neq 0$. Тогда

- 1) если $f''(x_0) < 0$, то x_0 точка локального максимума;
- 2) если $f''(x_0) > 0$ то x_0 точка локального минимума.

Доказательство. Пусть $f'(x_0) = 0$ и $f''(x_0) < 0$. Тогда $\exists U_{\delta}(x_0)$ такая, что $\forall x \in (x_0 - \delta, x_0)$ выполняется неравенство $f'(x) > f'(x_0) = 0$, т.е. функция f(x) возрастает, а $\forall x \in (x_0, x_0 + \delta)$ выполняется неравенство $f'(x) < f'(x_0) = 0$, т.е. функция f(x) убывает. Следовательно точка x_0 – точка локального максимума.

Аналогично, если f'' > 0. Тогда $\exists U_{\delta}(x_0)$ такая, что $\forall x \in (x_0 - \delta, x_0)$ выполняется неравенство $f'(x) < f'(x_0) = 0$, т.е. функция

f(x) убывает, а $\forall x \in (x_0, x_0 + \delta)$ выполняется неравенство $f'(x) > f'(x_0) = 0$, т.е. функция f(x) возрастает. Следовательно точка x_0 точка лькального минимума. Теорема доказана.

Пример. Исследовать на экстремум функцию $y = e^{-x^2}$.

Решение.

$$y' = 0 \leftrightarrow -2xe^{-x^2} = 0 \Rightarrow x = 0,$$

т.е. x = 0 – критическая точка функции.

$$y'' = 2e^{-x^2}(2x^2 - 1),$$

и y''(x=0)=-2<0. Следовательно, x=0 – точка локального максимаму, а y(x=0)=1 – локальный максимум.

Теорема (достаточные условия экстремума). Пусть f(x) k раз дифференцируема в точке $x=x_0$, и $f'(x_0)=f''(x_0)=\cdots=f^{(k-1)}(x_0)=0, f^{(k)}\neq 0.$

Тогда

- 1) если k четное, то при $f^{(k)}(x_0) > 0$ точка $x = x_0$ является точкой локального минимума, а при $f^{(k)}(x_0) < 0$ точкой локального максимума;
 - 2) если k нечетное, то в точке $x = x_0$ экстремума нет.

Пример. Для функции $y=x^3$ точка x=0 является критической. Но в этой точке функция не имеет экстремума, так как $f'(0)=3x^2|_{x=0}=0, \, f''(0)=6x|_{x=0}=0, \, f'''(0)=6\neq 0.$

1.3 Наибольшее и наименьшее значения функции.

Если функция f(x) определена и непрерывна на отрезке [a,b], то, согласно 2-й теореме Вейерштрасса, на этом отрезке она прнимает наибольшее и наименьшее значения.

Если свое наибольшее значение M функция f(x) принимает в точке $x_0 \in (a,b)$, то $M=f(x_0)$ – локальный максимум.

Аналогично с наименьшим значением: если $x_0 \in (a,b)$ и $m = f(x_0)$, то m – локальный минимум.

Однако, свои наибольшее M и наименьшее m значения функция f(x) может принимать и на концах отрезка [a,b]. Следовательно, чтобы найти наибольшее и наименьшее значения непрерывной на отрезке [a,b] функции f(x), надо найти все экстремумы на интервале (a,b) и значения функции на концах отрезка. Тогда m — наименьшее из всех полученных значений, а M — наибольшее.

Пример. Найти наименьшее и наибольшее значения функции $y = x(a-2x)^2$ на отрезке $[0, \frac{a}{2}]$.

Решение. f'=(a-2x)(a-6x). Следовательно, из y'=0 получаем $x_1=\frac{a}{2},\,x_2=\frac{a}{6}.$

Считаем значения функции в найденных точках и на концах отрезка:

$$f(x_1) = f\left(\frac{a}{2}\right) = 0$$
, $f(x_2) = f\left(\frac{a}{6}\right) = \frac{2a^3}{27}$, $f(0) = 0$.

Поскольку, наибольшее из всех полученных значений — это число $\frac{2a^3}{27}$, а наименьшее — это число 0, то $M=\frac{2a^3}{27}=f\left(\frac{a}{6}\right),\ m=0=f\left(\frac{a}{2}\right)=f(0).$

1.4 Направления выпуклости функции. точки перегиба.

Пусть функция y = f(x) такова, что существует конечная производная $f'(x_0)$, т.е. в точке $M(x_0, f(x_0))$ существует касательная к графику функции y = f(x), которая не параллельна оси Oy.

Определение. Если $\exists U_{\delta}(x_0)$ такая, что любые точки (x, f(x)) графика функции y = f(x), где $x \in U_{\delta}(x_0)$, расположены над касательной, проведенной к графику y = f(x) в точке $M(x_0, f(x_0))$, то говорят, что выпоуклость данной кривой направлена вниз.

Определение. Если $\exists U_{\delta}(x_0)$ такая, что любые точки (x, f(x)) графика функции y = f(x), где $x \in U_{\delta}(x_0)$, расположены под касательной, проведенной к графику y = f(x) в точке $M(x_0, f(x_0))$, то говорят, что выпоуклость данной кривой направлена вверх.

Определение. Точка $M(x_0, f(x_0))$ называется тоской перегиба графика функции y = f(x) если $\exists U_{\delta}(x_0)$ такая, что $\forall x < x_0, x \in U_{\delta}(x_0)$, выпуклость графика направлена в одну сторону, а $\forall x > x_0$, $x \in U_{\delta}(x_0)$, — в противоположную сторону, т.е. если при переходе через точку $M(x_0, f(x_0))$ график функции y = f(x) меняет направление выпуклости.

Теорема (необходимое условие перегиба). Если $M(x_0, f(x_0))$ точка перегиба графика y = f(x), то $f''(x_0) = 0$ либо не существует.

Доказательство. Пусть точка $M(x_0, f(x_0))$ – точка перегиба графика y = f(x) и пусть, для определенности,

$$\forall x \in U_{\delta}(x_0) : x < x_0 \Rightarrow f(x) > Y(x) \ (f(x) - Y(x) > 0),$$

$$\forall x \in U_{\delta}(x_0): x > x_0 \Rightarrow f(x) < Y(x) \ (f(x) - Y(x) < 0),$$

где Y(x) – ординаты касательной Y=Y(x) к графику y=f(x) в точке M.

Уравненеие касательной имеет вид

$$Y - f(x_0) = f'(x_0)(x - x_0),$$

ИЛИ

$$Y = f(x_0) + f'(x_0)(x - x_0)$$

Разложим функцию y = f(x) в ряд Тейлора в окрестности $U_{\delta}(x_0)$:

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0 + \theta(x - x_0))}{2!}(x - x_0)^2, \quad 0 < \theta < 1.$$

Тогда получим

$$f(x) - Y(x) =$$

учитывая уравнение касательной

$$= f(x) - \left(f(x_0) + f'(x_0)(x - x_0)\right) =$$

согласно разложения в ряд Тейлора

$$=\frac{f''(x_0+\theta(x-x_0))}{2!}(x-x_0)^2.$$

Так как,

если
$$f(x)-Y(x) > 0$$
, $\forall x \in U_{\delta}(x_0) : x < x_0$, то $f''(x_0+\theta(x-x_0)) > 0$, если $f(x)-Y(x) < 0$, $\forall x \in U_{\delta}(x_0) : x > x_0$, то $f''(x_0+\theta(x-x_0)) < 0$.

Предположим, что $f''(x_0) \neq 0$. Тогда, в силу устойчивости знака непрерывной функции, в окрестности $U_{\delta}(x_0)$ знак $f''(x_0 + \theta(x - x_0))$ совпадает со знаком $f''(x_0)$. Следовательно получаем противоречие предположению, т.е. $f''(x_0) = 0$ или не существует. Теорема доказана.

Теорема (достаточные условия перегиба). Пусть функция y = f(x) такая, что

- 1) $\exists f''(x) \ \forall x \in U_{\delta}(x_0),$
- 2) $f''(x_0) = 0$, или не существует,
- 3) $\forall x \in U_{\delta}(x_0)$ производная f''(x) меняет знак при переходе через точку x_0 .

Тогда точка $M(x_0, f(x_0))$ является точкой перегиба графика y = f(x).

Доказательство. Пусть выполнены условия теоремы. Тогда $\forall x \in U_{\delta}(x_0): x < x_0$ производная f''(x) имеет один знак, а $\forall x \in U_{\delta}(x_0): x > x_0$ производная f''(x) имеет противоположный знак. Следовательно, при переходе через точку $M(x_0, f(x_0))$ график y = f(x) меняет направление выпуклости, т.е. точка M является точкой перегиба.

Если $\nexists f''(x)$, то касательная вертикальна. Теорема доказана.

1.5 Асимптоты графика функции.

Определение. Прямая, к которой график кривой y = f(x) непрерывно приближается, называется асимптотой.

1) Вертикальные асимптоты.

Определение. Прямая $x=x_0$ называется вертикальной асимптотой графика y=f(x), если хотя ба один из пределов $\lim_{x\to x_0+0} f(x)$, $\lim_{x\to x_0-0} f(x)$, равен $\pm\infty$.

При этом, если $\lim_{x\to x_0+0} f(x)=\pm\infty$, то $x=x_0$ является левой асимптотой, а если $\lim_{x\to x_0-0} f(x)=\pm\infty$, то $x=x_0$ – правой асимптотой.

2) Наклонные асимптоты.

Теорема. Чтобы график y=f(x) имел при $x\to +\infty$ наклонную асимптоту y=kx+b, необходимо и достаточно, чтобы существовали пределы $\lim_{x\to +\infty}\frac{f(x)}{x}=k, \ \lim_{x\to +\infty}\left(f(x)-kx\right)=b.$

Доказательство. (\Rightarrow) Пусть y = kx + b — асимптота графика y = f(x). Тогда функцию y = f(x) можно представить в виде $f(x) = kx + b + \alpha(x)$, где $\alpha(x) \to 0$ при $x \to +\infty$. Следовательно существуют пределы $\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \left(x + \frac{b}{x} + \frac{\alpha(x)}{x}\right) = k$, $\lim_{x \to +\infty} (f(x) - kx) = \lim_{x \to +\infty} (kx + b + \alpha(x) - kx) = b$.

(\Leftarrow) пусть существуют пределы $\lim_{x\to +\infty}\frac{f(x)}{x}=k, \lim_{x\to +\infty}(f(x)-kx)=b.$

Тогда функция $\alpha(x)=f(x)-kx-b$ – бесконечно малая при $x\to +\infty$. Следовательно, $f(x)=kx+b+\alpha(x)$, где $\alpha(x)\to 0$ при $x\to +\infty$, т.е. y=kx+b – наклонная асимптота графика y=f(x). Аналогично, при $x\to -\infty$. Теорема доказана.

3) Горизонтальные асимптоты. – частный случай наклонной асимптоты при k=0.

Пример 1. Функция $y=\frac{x^2}{x-1}$ неопределена в точке x=1. Поскольку $\lim_{x\to 1\pm 0}\frac{x^2}{x-1}=\pm\infty$, то прямая x=1 является вертикальной

асимптотой графика $y = \frac{x^2}{x-1}$. Далее,

$$k = \lim_{x \to \pm \infty} \frac{f(x)}{x} = \lim_{x \to \pm \infty} \frac{x^2}{(x-1)x} = \lim_{x \to \pm \infty} \frac{x}{x-1} = 1,$$

$$b = \lim_{x \to \pm \infty} (f(x) - kx) = \lim_{x \to \pm \infty} \left(\frac{x^2}{x - 1} - x \right) = \frac{x^2 - x^2 + x}{x - 1} = 1.$$

Следовательно, прямая y=x+1 является наклонной асимптотой графика $y=\frac{x^2}{x-1}.$

Пример 2. Функция $y=\frac{\sin x}{x}$ неопределена в точке x=0. Однако, $\lim_{x\to 0\pm}\frac{\sin x}{x}=1$, следовательно, прямая x=0 не является асимптотой к данному графику. Далее,

$$k = \lim_{x \to \pm \infty} \frac{\sin x}{x \cdot x} = 0,$$

$$b = \lim_{x \to \pm \infty} \left(\frac{\sin x}{x} - 0 \cdot x \right) = 0.$$

Следовательно, прямая y=0 горизонтальная асимптота графика $y=\frac{\sin x}{x}.$