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Abstract. We apply the generalized Jordan sets techniques to reduce
partial differential-operator equations with the Fredholm operator in the
main expression to regular problems. In addition this techniques has been
exploited to prove a theorem of existence and uniqueness of a singular
initial problem, as well as to construct the left and right regularizators
of singular operators in Banach spaces and to construct fundamental
operators in the theory of generalized solutions of singular equations.

Introduction

Let
x = (t, x′) be a point in the space Rm+1,

x′ = (x1, . . . , xm), D = (Dt, Dx1
, . . . , Dxm

),

α = (α0, . . . , αm), | α |= α0 + α1 + · · ·αm, where

αi are integer non-negative indexes, Dα =
∂α

∂tα0 . . . ∂xαm

m

.

We also suppose that Bα : Dα ⊂ E1 → E2 are closed linear operators with dense
domains in E1, x ∈ Ω, where Ω ⊂ Rm+1, | t |≤ T, E1, E2 are Banach spaces.

Let us consider the following operator

L(D) =
∑

|α|≤l

BαD
α. (1)

The operator
∑

|α|=lBαD
α we call the main part of L(D). Due to its theoretical

significance and numerous applications (see [1], [2], [8], [9]) the most interesting
case is when the operator L(D) contains a Fredholm operator Bl0...0 ≡ B in the
higher derivative Dl

t.
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If N(B) 6= {0}, then the operator L(D) is called a singular differential oper-
ator. A singular operator of the first order

B
d

dt
+A (2)

with the Fredholm operator B when x = t ∈ R1, has been investigated inten-
sively. The significant results of these investigations were obtained due to new
research approaches in the semigroup theory (the bibliography and mechanical
models are represented in [9]). The investigations similar to our research, con-
sidering the case when x ∈ Rm+1 are represented in [7], [8]. Below we use some
results from [3], [4], [7].

We consider the equation

L(D)u = f(x), (3)

where f : Ω → E2 is an analytical function of x′ sufficiently smooth of t. The
Cauchy problem for (3), when E1 = E2 = Rn and the matrix B = Bl0...0 is
not degenerated, has been thoroughly studied in fundamental papers by I.G.
Petrovsky (see [5]). In the case when the operator B is not invertible the theory
of initial and boundary value problems for (3) is not developed even for the case
of finite dimensions. In general, the standard Cauchy problem with conditions
Di

tu|t=0 = gi(x
′), i = 0, . . . , l − 1 for (3) has no classical solutions for an

arbitrary right part f(x).
The motive of our investigations is the wish to conceive the statement of ini-

tial and boundary value problems for the systems of partial differential equations
with the Fredholm operator in the main part and also their applications. In this
paper we show that we can get a reasonable statement of the initial problems
for such systems by decomposing the space E1 on the direct sum of subspaces in
accordance with the Jordan structure ( [8], [10]) of the operator coefficients Bα,
and imposing conditions on projections of the solution. Here we suppose that B
is a closed Fredholm operator, D(B) ⊆ D(Bα) ∀α, and among the coefficients
Bα there is an operator A = Bl10...0, l1 < l, with respect to which B has the
complete A-Jordan set [10].

In Section 1 the sufficient conditions of existence of the unique solution of
equation (3) with the initial conditions

Di
tu|t=0 = gi(x

′), i = 0, 1, . . . , l1 − 1, (4)

(I − P )Di
tu|t=0 = gi(x

′), i = l1, . . . , l − 1, (5)

are obtained, where gi(x
′) are analytical functions with values in E1, P gi(x

′) =
0, i = l1, . . . , l − 1. Here P is the projector of E1 onto corresponding A-root
subspace. In Section 2 the left and right regularizators of singular operators in
Banach spaces have been constructed. A method of fundamental operators for
construction of the solution in the class of Schwarz distributions [6] is considered
in Section 3. We hope that these investigations can be useful for considering of
new applications [8], [9] of singular differential systems.



1 Selection of projection operators and reduction of the

initial problem to the Kovalevskaya form

Suppose the following condition is satisfied:

Condition 1 [10] The Fredholm operator B has a complete A-Jordan set ϕ
(j)
i ,

B∗ has a complete A∗-Jordan set ψ
(j)
i , i = 1, n, j = 1, pi, and the systems

γ
(j)
i ≡ A∗ψ

(pi+1−j)
i , z

(j)
i ≡ Aϕ

(pi+1−j)
i , i = 1, n, j = 1, pi, corresponding to them,

are biorthogonal. Here pi are the lengths of the Jordan chains of the operator B.

Recall that condition 1 is satisfied if the operator B+λA is continuously invert-
ible when 0 <| λ |< ε [10].

We introduce the projectors

P =

n
∑

i=1

pi
∑

j=1

< ., γ
(j)
i > ϕ

(j)
i ≡ (< ., Υ > Φ),

Q =
n
∑

i=1

pi
∑

j=1

< ., ψ
(j)
i > z

(j)
i ≡ (< ., Ψ > Z),

generating the direct decompositions

E1 = E1k ⊕E1∞−k, E2 = E2k ⊕E2∞−k,

where k = p1 + · · ·+ pn is a root number. Then any solution of equation (3) can
be represented in the form

u(x) = Γv(x) + (C(x), Φ), (6)

where Γ = (B +
∑n

i=1 < ., γ
(1)
i > z

(1)
i )−1 is a bounded operator [10],

v ∈ E2∞−k , C(x) = (C11(x), . . . , C1p1
(x), . . . , Cn1(x), . . . , Cnpn

(x))T ,

Φ = (ϕ
(1)
1 , . . . , ϕ

(p1)
1 , . . . , ϕ(1)

n , . . . , ϕ(pn)
n )T ,

where T denotes transposition. The unknown functions v(x) : Ω ⊂ Rm+1 →
E2∞−k and C(x) : Ω ⊂ Rm+1 → Rk due to initial conditions (4), (5), satisfy
the following conditions

Di
tv|t=0 =

{

B(I − P )gi(x
′), i = 0, . . . , l1 − 1,

Bgi(x
′), i = l1, . . . , l− 1,

(7)

Di
tC|t=0 = βi(x

′), i = 0, . . . , l1 − 1. (8)

Here βi(x
′) are coefficients of projections Pgi(x

′), i = 0, . . . , l1 − 1.

Condition 2 The operator coefficients Bα in (3) satisfy at least one of five
conditions on D(Bα):



1. BαP = QBα, i.e. Bα (P,Q)-commute, briefly, α ∈ q0;
2. BαP = 0, briefly α ∈ q1;
3. QBα = 0, briefly α ∈ q2;
4. (I −Q)Bα = 0, briefly α ∈ q3;
5. Bα(I − P ) = 0, briefly α ∈ q4;

We introduce the scalar product (Φ,C) =
∑n

i=1

∑pi

j=1 ϕ
(j)
i Cij . Then

< Bα(Φ,C), Ψ >= AT
αC,

where Ψ = (ψ
(1)
1 , . . . , ψ

(p1)
1 , . . . , ψ

(1)
n , . . . , ψ

(pn)
n )T . Due to condition 1 and lemma

3 [7] α ∈ q0, if and only if

B∗
αΨ = AT

αΥ, BαΦ = AαZ.

The operators B ≡ Bl0...0, A ≡ Bl10...0 belong to the set q0. Moreover the
matrices of (P,Q)-commutability are symmetrical cell-diagonal matrices:

Al0···0 = diag(B1, . . . , Bn), Al10···0 = diag(A1, . . . , An), (9)

where

Bi =









0 0 . . . 0
0 0 . . . 1
. . . . . . . . . . . .

0 1 . . . 0









, Ai =





0 . . . 1
. . . . . . . . .

1 . . . 0



 , i = 1, n,

if pi ≥ 2 and Bi = 0, Ai = 1 if p1 = 1.

Al0···0 = 0, Al10···0 = E, (10)

if k = n.

Note that due to the structure of projectors P,Q the identity ΓQ = PΓ holds.
The spaces E2k, E2∞−k are invariant subspaces of the operator Γ . Taking into
account that operator Γ is a bounded one, D(B) ⊆ D(Bα) and D(Bα) = E1,

we obtain BαΓ ∈ L(E1 → E2).
Thus by substituting (6) into (3) and projecting the result onto the subspace

E2∞−k, we obtain the equation

Dl
tv + (I −Q)

′
∑

BαΓD
αv = (I −Q)(f −

′′
∑

Bα(DαC,Φ)), (11)

where
′
∑

=
∑

|α|≤l, α∈(q0,q1,q2)\(l0...0)

,

′′
∑

=
∑

|α|≤l,α∈(q2,q4)

with condition (7). Similarly, we project (3), where u is defined by (6), onto the
subspace E2k and obtain the system

∑

|α|≤l,α∈(q0,q3,q4)

MαD
αC = b(x, v) (12)



with initial condition (8). Thus the initial problem (3), (4), (5) is reduced to
problems (11), (7) and (12), (8).

In system (12)

Mα = ‖ < Bαϕ
(s)
l , ψ

(j)
i > ‖, i, l = 1, . . . n, j = 1, . . . , pi, s = 1, . . . , pl,

are matrices of the dimension k×k, b(x, v) is the vector of projection coefficients

Q(f −
∑

|α|≤l,α∈(q1,q3)

BαΓD
αv).

Recall that if α ∈ q0, then Mα = AT
α . Thus, for k = n according to (10) it

follows that
Ml0...0 = 0, Ml10...0 = E,

and for k > n the matrices Ml0...0, Ml10...0 are defined from (9).

Theorem 1. Suppose conditions 1 and 2 are satisfied, the function f(x) is an
analytical on x′ and sufficiently smooth on t. Suppose

1. (q2, q4) ⊂ q0 or (q1, q3) ⊂ q0;
2. QBαP = 0 for all α ∈ (q0, q3, q4) \ (l0 . . . 0), (l10 . . . 0).

Then the problem (3), (4), (5) has a unique classical solution (6).

Proof. Note that for α ∈ q0, and for any C the equality (I−Q)Bα(DαC,Φ) = 0
holds and QBαΓv = 0, where Qv = 0. Thus, according to condition 1 of this
theorem the right-hand side of (11) is independent on the vector-function C(x),
or the right-hand side of (12) is independent on v(x). The equation (11) is
solvable with respect to Dl

tv, i.e. has the Kovalevskaya form with the bounded
operator coefficients. Due to condition 2 of this theorem the system (12) takes
the following form

Ml0...0D
l
tC +Ml10...0D

l1
t C = b(x, v). (13)

If k = n, then Ml0...0 = 0, Ml10...0 = E and system (13) has the order l1. If
k > n then system (13) is split on n independent subsystems:

∂l1

∂tl1
Cipi

= bipi
(x, v),

∂l1

∂tl1
Cipi−k +

∂l

∂tl
Cipi−k+1 = bipi−k(x, v), (14)

where i = 1, n, k = 1, pi − 1. Each subsystem (14) is regular, since it is a
recurrent sequence of differential equations of order l1. Thus systems (11), (12)
with boundary conditions (7), (8) have the Kovalevskaya form and therefore
have the unique solution. Taking v and C from the regular systems (11), (12)
and substituting them into (6), we obtain the needed solution. ut

Remark 1. Let the operators Bα in condition 2 depend on x for
α 6= (l0 . . .0), (l10 . . . 0). Then the coefficients in the systems (11), (12) also
depend on x. If these coefficients are analytical on x′ and sufficiently smooth on
t, then theorem 1 is valid. Required smoothness on t for these coefficients and
f(x) is defined by maximum length of A-Jordan chains of operator B.



2 The left and right regularizators of singular operators

in Banach spaces.

Let A and B be constant linear operators from E1 to E2, where E1 and E2 are
Banach spaces, x(t) is an abstract function, t ∈ Rn with the values in E1(E2).
The set of such functions we denote by Xt(Yt). We introduce the operator Lt, de-
fined on Xt and Yt and which is commutable with operators B,A. The examples
of such operator Lt are differential and integral operators, difference operators
and their combinations. Note that if operators are solved according to higher
order derivatives, then they usually generate correct initial and boundary value
problems. In other cases, when operators are unsolved according to higher order
derivatives, we get the singular problems (see sec.1).

Let us consider the operator LtB − A, which acts from Xt to Yt, where
B,A are closed linear operators from E1 to E2 with the dense domains, and
D(B) ⊆ D(A). If B is invertable, then the operator LtB −A can be reduced to
regular operator by multiplication on B−1. If B is uninvertable, then LtB − A

is called the singular operator. Let operator B in LtB − A be Fredholm and
dimN(B) = n ≥ 1. If λ = 0 is an isolated singular point of the operator-
function B−λA, then the operators LtB−A,BLt−A admit some regularization.
For explicit construction of regularizations we use the Schmidt pseudo resolvent

Γ = B̂−1, where B̂ = B +
∑n

i=1 < .,A∗ψ
(pi)
i > Aφ

(pi)
i . On the base of condition

1( sec. 1) and using the equalities φ
(j)
i = ΓAφ

(j−1)
i , ψ

(j)
i = Γ ∗A∗ψ

(j−1)
i , j =

2, . . . , pi, i = 1, . . . , n it is easy to check the following equalities

(Γ −

n
∑

i=1

pi
∑

j=1

L
j
t < ., ψ

(pi+1−j)
i > φi)(LtB −A) = Lt − ΓA,

(LtB −A)(Γ −

n
∑

i=1

pi
∑

j=1

L
pi+1−j
t < ., ψi > φ

(j)
i ) = Lt −AΓ.

Thus we have the following

Theorem 2. Suppose condition 1 in section 1 is satisfied . Then

(Γ −

n
∑

i=1

pi
∑

j=1

L
j
t < ., ψ

(pi+1−j)
i > φi)

and

Γ −

n
∑

i=1

pi
∑

j=1

L
pi+1−j
t < ., ψi > φ

(j)
i

are the left and right regularizators of LtB −A, respectively.

Note that these results are applicable for the investigation of singular differential-
operator equations with the Fredholm operator in the main part (see [1]).



3 Fundamental operator-functions of singular partial

differential and differential-difference operators in

Banach spaces.

Since the standard Cauchy problem for equation (3) with the Fredholm operator
Bl0...0 in general has no classical solution, then it will be interesting to extend
the notion of solution and to seek generalized solution in a distribution space
[6].

The most interesting is the construction of the fundamental operator func-
tions for the singular differential operators in Banach spaces which help to obtain
the generalized solutions in closed forms.

Here we construct the fundamental operator functions for the following map-
pings

B
∂2Nu

∂xN∂yN
−Au, B

∂u

∂t
−A(u(t, x− µ) − u(t, x)),

where B is a Fredholm operator.
The basic information on generalized functions in Banach spaces, their prop-

erties and operations can be found in [3], [8].

Theorem 3. Suppose that condition 1 is satisfied. Then the mapping Bδ′(x)δ′(y)
−Aδ(x)δ(y) in the space K ′(E2) has the fundamental operator function of the
form

E1(x, y) = ΓU1(AΓ )(x, y)[I −Q]θ(x, y)

−
n
∑

i=1

pi−1
∑

k=0

{pi−k
∑

j=1

〈·, ψ
(j)
i 〉ϕ

(pi−k+1−j)
i

}

δ(k)(x) · δ(k)(y),

where

U1(AΓ )(x, y) =

∞
∑

i=0

(AΓ )i ·
xi

i!
·
yi

i!
.

Proof. In accordance with the definition it is necessary to check up a validity of
equality

(Bδ′(x) · δ′(y) −Aδ(x) · δ(y)) ∗ E1(x, y) ∗ u(x, y) = u(x, y)

on the basic space K(E∗
2 ). Let us substitute the expression for E1(x, y) into the

left-hand side of this equality

(Bδ′(x) · δ′(y) −Aδ(x) · δ(y)) ∗ E1(x, y) ∗ u(x, y)

=

(

BΓAΓU1(AΓ )(x, y)[I −Q]θ(x, y) +BΓ [I −Q]δ(x) · δ(y)

−
n
∑

i=1

pi−1
∑

k=1

{pi−k
∑

j=1

〈·, ψ
(j)
i 〉

(

Bϕ
(pi−k+2−j)
i −Aϕ

(pi−k+1−j)
i

)}

δ(k)(x) · δ(k)(y)



−AΓU1(AΓ )(x, y)[I −Q]θ(x, y) +Qδ(x) · δ(y)

)

∗ u(x, y).

Since BΓ = I −
∑n

i=1〈·, ψ
(1)
i 〉zi, zi = Aϕ

(pi)
i , Bϕ

(j)
i = Aϕ

(j−1)
i , then

n
∑

i=1

〈·, ψ
(1)
i 〉zi[I −Q] = 0,

n
∑

i=1

〈·, ψ
(1)
i 〉ziAΓU1(AΓ )(x, y)[I −Q] = 0

and

(Bδ′(x) · δ′(y)−Aδ(x) · δ(y)) ∗ E1(x, y) ∗u(x, y) = Iδ(x) · δ(y) ∗u(x, y) = u(x, y).

ut

The following theorem can be proved similarly.

Theorem 4. Suppose condition 1 is satisfied, then the mapping Bδ(N)(x)·δ(N)(y)
−Aδ(x) · δ(y)) in the space K ′(E2) has the fundamental operator function of the
form

EN(x, y) = ΓUN(AΓ )(x, y)[I −Q]θ(x, y)

−

n
∑

i=1

pi−1
∑

k=0

{pi−k
∑

j=1

〈·, ψ
(j)
i 〉ϕ

(pi−k+1−j)
i

}

δ(k·N)(x) · δ(k·N)(y),

where

UN (AΓ )(x, y) =

∞
∑

i=1

(AΓ )i−1 ·
xi·N−1

(i ·N − 1)!
·

yi·N−1

(i ·N − 1)!
.

As a corollary of theorem 3 we obtain

Corollary 1. Suppose condition 1 is satisfied, the function f(x, y) ∈ C(R2
+)

takes value in E2. Then the boundary value problem

B
∂2u

∂x∂y
= Au+ f(x, y), u|x=0 = α(y), u|y=0 = β(x),

u(x, y) ∈ C2(R2
+), α(x), β(x) ∈ C1(R1

+), α(0) = β(0), has a generalized solution
of the form

u = E1(x, y) ∗ (f(x, y)θ(x, y) +Bα′(y)δ(x) · θ(y)

+Bβ′(x)θ(x) · δ(y) +Bα(0)δ(x) · δ(y)).

If additionally the singular components of the generalized solutions are equal
to zero then, firstly, generalized solutions coincide with continuous (classical)
solutions, and, secondly, we can define a set of the boundary values α(y) and
β(x) and right sides f(x, y), for which such problems are solvable in the class of
functions C2(R2

+).



Remark 2. The following boundary value problem can be investigated similarly

B
∂2Nu

∂xN∂yN
= Au+f(x, y),

∂iu

∂xi
|x=0 = αi(y),

∂iu

∂yi
u|y=0 = βi(x), i = 0, . . . , N −1.

Theorem 5. Suppose that condition 1 is satisfied with p1 = p2 = . . . pn = 1.
Then the mapping Bδ′(t) · δ(x) − Aδ(t) · (δ(x − µ) − δ(x)) in the space K ′(E2)
has the fundamental operator function of the form

E(t, x) =

∞
∑

k=0

Γe−AΓt (AΓt)
k

k!
θ(t) ·δ(x−µ)∗

{

Iδ(t) ·δ(x)+Qδ′(t) ·

∞
∑

j=0

δ(x−jµ)

}

.

Proof. In accordance with the definition it is necessary to check up a validity of
equality

(Bδ′(t) · δ(x) −Aδ(t) · (δ(x− µ) − δ(x))) ∗ E(t, x) ∗ u(t, x) = u(t, x)

on the basic space K(E∗
2 ). Let us substitute the expression for E(t, x) into the

left-hand side of this equality

(Bδ′(t) · δ(x) −Aδ(t) · (δ(x − µ) − δ(x))) ∗ E(t, x) ∗ u(t, x)

=

[

Iδ(t) · δ(x) + F (t, x)

]

∗ u(t, x),

where

F (t, x) = −

∞
∑

k=0

Q

(

e−t t
k

k!
θ(t)

)′

· δ(x− kµ) +

[

Iδ(t) · δ(x)

−

∞
∑

k=0

Q

(

e−t t
k

k!
θ(t)

)′

· δ(x− kµ))

]

∗Qδ′(t) ·

∞
∑

j=0

δ(x − jµ) = 0.

ut

Remark 3. In theorem 4 x can be vector, moreover theorem 5 keeps its validity
if pi ≥ 1, 1, . . . , n, and differential operator can be changed on differential-
difference operator

Bδ(N)(t) · δ(x) −Aδ(t) · (δ(x − µ) − δ(x)).

Corollary 2. Suppose condition of theorem 5 is satisfied, the function f(t, x) ∈
BUC(R1) [4] ∀t ≥ 0, takes value in E2. Then the Cauchy problem for differential-
difference equation

B
∂u

∂t
= A(u(t, x − µ) − u(t, x)) + f(t, x), u|t=0 = u0(x),

where u0(x) ∈ BUC(R1), has a generalized solution of the form

u = E(t, x) ∗ (f(t, x)θ(t) +Bu0(x)δ(t)).
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