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Abstract

We consider methods of reduction of differential operator equations with the Fredholm operator in the main
expression to regular problems. Relation between the initial conditions choice problem and the Jordan structure
of operator coefficients of equations is shown. The theorem of existence and uniqueness of the initial problem is
proved. The method of fundamental operators is used for construction of solutions in the Schwarz distribution
class.
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1 Introduction

Let
x = (t, x′) be a point in the space Rm+1,

x′ = (x1, . . . , xm), D = (Dt, Dx1
, . . . , Dxm

),

α = (α0, . . . , αm), | α |= α0 + α1 + · · ·αm,where

αi are integer non-negative indexes, Dα = ∂α

∂tα0 ...∂x
αm
m

.

We also suppose that Bα : Dα ⊂ E1 → E2 are closed linear operators with dense domains D(Bα) in E1, B ≡ Bl0...0

is a Fredholm operator, D(B) ⊆ D(Bα)∀α x ∈ Ω, where Ω ⊂ Rm+1, | t |≤ T, E1, E2 are Banach spaces.
We consider the equation

L(D)u = f(x),(1)

where
L(D) =

∑

|α|≤l

BαD
α,

f : Ω → E2 is an analytical function of x′ sufficiently smooth of t.
The Cauchy problem for (??), when E1 = E2 = Rn and the matrix B = Bl0...0 is not degenerated, has been

thoroughly studied in fundamental papers by I.G. Petrovsky (see [?]). In the case when the operator B is not
invertible the theory of initial and boundary value problems for (??) is not developed even for the case of finite
dimensions. In general, the standard Cauchy problem with conditions Di

t|t=0u = gi(x
′), i = 0, . . . , l − 1 for (??) has

no classical solutions for an arbitrary right part f(x).
The motif of our investigations is the wish to conceive the statement of initial and boundary value problems for

the partial differential systems with the Fredholm operator in the main part and also their applications.
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In this paper we show that we can get a reasonable statement of the initial problems for such systems by decompos-
ing the space E1 on the direct sum of subspaces in accordance with the Jordan structure ([?],[?], [?]) of the operator
coefficients Bα, and imposing conditions on projections of the solution. In this case the projections of the solution
will be defined by regular problems.

Here we suppose that B is a closed Fredholm operator, and among the coefficients Bα there is an operator
A = Bl10...0, l1 < l, with respect to which B has the complete A-Jordan set [?]. Here P is the projector of E1 onto
corresponding A-root subspace.

In Section 2 the investigation of equation (??) is reduced to regular problems and the sufficient conditions of
existence of the unique solution of equation (??) with the initial conditions

Di
tu|t=0 = gi(x

′), i = 0, 1, . . . , l1 − 1,(2)

(I − P )Di
tu|t=0 = gi(x

′), i = l1, . . . , l − 1,(3)

are obtained, where gi(x
′) are analytical functions with values in E1, P gi(x

′) = 0, i = l1, . . . , l − 1.
In this paper the investigation of equation (??) is reduced to regular problems. A method of fundamental operators

for construction of the solution in the class of Schwarz distributions [?] is considered in Section 3. These investigations
can be useful for solving electrical engineering and some mechanical problems [?],[?], etc.

2 Selection of projection operators and reduction of the initial problem

to the Kovalevskaya form

Suppose the following condition is satisfied:

Condition 1. [?] The Fredholm operator B has a complete A- Jordan set φj
i , B

∗ has a complete A∗- Jordan set

ψ
j
i , i = 1, n, j = 1, pi, and the systems γ

(j)
i ≡ A∗ψ(pi+1−j)

i , z
(j)
i ≡ Aφ

(pi+1−j)
i , where i = 1, n, j = 1, pi,

corresponding to them, are biorthogonal. Here pi are the lengths of the Jordan chains of the operator B.

Recall that condition 1 is satisfied if the operator B + λA is continuously invertible when 0 <| λ |< ε [?].
We introduce the projectors

P =

n
∑

i=1

pi
∑

j=1

< ., γ
(j)
i > ϕ

(j)
i ≡ (< .,Υ > Φ),

Q =

n
∑

i=1

pi
∑

j=1

< ., ψ
(j)
i > z

(j)
i ≡ (< .,Ψ > Z),

generating the direct decompositions

E1 = E1k ⊕E1∞−k , E2 = E2k ⊕E2∞−k,

where k = p1 + · · · + pn is a root number.
Then any solution of equation ?? can be represented in the form

u(x) = Γv(x) + (C(x),Φ),(4)

where Γ = (B +
∑n

i=1 < ., γ
(1)
i > z

(1)
i )−1 is a bounded operator [?],

v ∈ E2∞−k , C(x) = (C11(x), . . . , C1p1
(x), . . . , Cn1(x), . . . , Cnpn

(x))T ,

Φ = (ϕ
(1)
1 , . . . , ϕ

(p1)
1 , . . . , ϕ(1)

n , . . . , ϕ(pn)
n )T ,

where T denotes transposition.
The unknown functions v(x) : Ω ⊂ Rm+1 → E2∞−k and C(x) : Ω ⊂ Rm+1 → Rk due to initial conditions (??),

(??), satisfy the following conditions

Di
tv|t=0 =

{

B(I − P )gi(x
′), i = 0, . . . , l1 − 1,

Bgi(x
′), i = l1, . . . , l− 1,

(5)

Di
tC|t=0 = βi(x

′), i = 0, . . . , l1 − 1.(6)

Here βi(x
′) are coefficients of projections Pgi(x

′), i = 0, . . . , l1 − 1.
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Condition 2. The operator coefficients Bα in (??) satisfy at least one of five conditions on D(Bα):

1. BαP = QBα, i.e. Bα (P,Q)-commute, briefly, α ∈ q0;

2. BαP = 0, briefly α ∈ q1;

3. QBα = 0, briefly α ∈ q2;

4. (I −Q)Bα = 0, briefly α ∈ q3;

5. Bα(I − P ) = 0, briefly α ∈ q4;

Theorem 2.1 Suppose conditions 1 and 2 are satisfied, the function f(x) is an analytical on x′ and is a sufficiently
smooth on t. Suppose

1. (q2, q4) ⊂ q0 or (q1, q3) ⊂ q0;

2. QBαP = 0 for all α ∈ (q0, q3, q4) \ (l0 . . . 0), (l10 . . . 0).

Then the problem (??), (??), (??) has the unique classical solution (??).

The proof is carried out by substituting (??) into (??) and then projecting onto the subspaces E2∞−k and E2k.

Remark 2.1 Let the operators Bα in condition 2 depend on x for
α 6= (l0 . . .0), (l10 . . . 0). If these operator coefficients are analytical on x′ and sufficiently smooth on t, then theorem
2.1 is valid. Likewise in [?] required smoothness on t for these coefficients and f(x) is defined by maximum length of
A-Jordan chains of operator B. If p = max(p1, . . . , pn), then (see [?]) existence of derivatives of the order p− 1 on t

for f(x) and for coefficients Bα is sufficient for validity of theorem 2.1.

Remark 2.2 Conditions 1 and 2 in theorem 2.1 can be essentially weakened. For example, if k = n, then instead of
conditions 1 and 2 of theorem 2.1 we can require:

α). maxα∈(q2,q4) | α |< l;
β). QBαP = 0 for α ∈ (q0, q3, q4), l1 <| α |≤ l.

3 Fundamental operator-functions of singular differential- operator map-

pings in Banach spaces

Since the standard Cauchy problem for equation (??) with the Fredholm operator Bl0...0 in general has no classical
solution [?], it is interesting to extend the notion of a solution and to look for a generalized solution in a distribution
space [?]. The most interesting is to construct fundamental operator-functions for singular differential operators in
Banach spaces which make it possible to obtain generalized solutions in closed forms.

Here we construct the fundamental operator-functions for the following operators

B
d

dt
−A

and

B
d2

dt2
−A,

where B is a Fredholm operator.

3.1 Generalized functions in Banach spaces

Let E be a Banach space and E∗ is the conjugate one. Assign to the set K(E∗) of basic functions all finite functions
of class C∞ with values in E∗. We denote such functions by s(t). The support supp s(t) of the basic function s(t) is
the closure in R1 of the set of such points t, for which s(t) 6= 0. The basic set K(E∗) is the vector space. This space
can be made topological one if we define the convergence in it in the following manner

Definition 3.1 The sequence of functions sn(t) from K(E∗) converges to the function s(t) ∈ K(E∗) if:

1. There exists R > 0 such that supp sn(t) ⊂ [−R; R] ∀n ∈ N ;
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2. ∀α ∈ N ‖ s(α)
n (t) − s(α)(t) ‖=⇒ 0 uniformly on t ∈ [−R; R] for n→ ∞.

The set K(E∗) with introduced convergence is called the space of basic functions K(E∗).
Any linear continuous functional fromK(E∗) we call generalized function . The convergence in the set of generalized

functions we define as the weak one. The support, the equality of two generalized functions, the addition and the
multiplication on the number for generalized functions are defined in usual manner. Locally integrable by Bochner
function u(t) with values in E generates the regular generalized function according to the following rule

(u(t), s(t))
def
=

∫ +∞

−∞
< u(t), s(t) > dt, ∀s(t) ∈ K(E∗).

All other generalized functions are called singular.
From the set K ′(E) of generalized functions we select the special class K ′

+(E) of generalized functions the supports
of which are bounded from the left by zero. Such functions are, for example, the functions of the form u(t)g(t), where
u(t) ∈ C∞(E), g(t) ∈ D′

+ [?] or u(t) ∈ C∞
+ (E), g(t) ∈ D′, acting by the rule

(u(t)g(t), s(t))
def
= (g(t), < u(t), s(t) >), ∀s(t) ∈ K(E∗).

Let E1, E2 be Banach spaces, K(t) ∈ L(E1;E2) is strongly continuous operator-function of the class C∞, and also
K∗(t) ∈ L(E∗

2 ;E∗
1 ) there exists for almost all t, f(t) ∈ D′

+. Then the formal symbol K(t)f(t) is called a generalized
operator-function.

Definition 3.2 The convolution of the generalized operator-function K(t)f(t) and generalized function v(t) ∈ K ′
+(E1)

we call the generalized function K(t)f(t) ∗ v(t) ∈ K ′
+(E2), acting by the formula

(K(t)f(t) ∗ v(t), s(t)) def
= (f(t), (v(τ), K∗(t)s(t + τ))), ∀s(t) ∈ K(E∗

2 ).

In particular, if v(t) = u(t)g(t), where u(t) ∈ C∞(E1), g(t) ∈ D′
+, u(t) ∈ D(K(·)), then

(K(t)f(t) ∗ u(t)g(t), s(t)) = (f(t), (u(τ)g(τ), K∗(t)s(t+ τ))) =

= (f(t), (g(τ), < K(t)u(τ), s(t+ τ) >)).

From here we obtain the following equality: ∀s(t) ∈ K(E∗
3 ), A ∈ L(E2, E3), R(K(·)) ⊂ D(A)

Aδ(ı)(t) ∗ K(t)f(t) ∗ u(t) = (AK(t)f(t))(ı) ∗ u(t),
which we take as the definition for the case of closed linear operator A.

Consider the differential operator

L(
d

dt
) =

dn

dtn
+An−1

dn−1

dtn−1
+ . . .+A1

d

dt
+A0,

where Aı are linear bounded operators from E in E,
⋂n

ı=1D(Aı) = E, and corresponding to it generalized operator-
function

L(δ(t)) = Iδn(t) +An−1δ
n−1(t) + · · · +A1δ

′(t) +A0δ(t).

Remark 3.1 If u(t) ∈ Cn(E) is the solution of the Cauchy problem

L(
d

dt
)u = f(t), u(ı)(0) = uı, ı = 0, 1, · · · , n− 1,

where f(t) ∈ C(E), then u(t), being continued by zero on t < 0, satisfies in generalized sense [?] to convolution equation

L(δ(t)) ∗ u(t) = g(t),
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where

g(t) = f(t)θ(t) +

n−1
∑

i=0

ciδ
(i)(t).

Here
cn−1 = uo, cn−2 = An−1u0 + u1, . . . , c0 = A1u0 + · · · +An−1un−2 + un−1,

i.a. g(t) ∈ K ′
+(E).

Definition 3.3 The generalized operator-function E(t) of the order n such that for any u(t) ∈ K ′
+(E) on the basic

space K(E∗) the equality
L(δ(t)) ∗ E(t) ∗ u(t) = u(t)

holds, is called the fundamental operator-function of the order n for the operator L( d
dt

).

Remark 3.2 Due to the triple convolution property mentioned above this definition makes sense also for the case of
closed linear operators Ai.

Examples 3.1 The generalized operator-function E(t) = eAtθ(t) is the fundamental operator-function on the class
K ′

+(E) for the operator ( d
dt

− A) with a bounded operator A. Similarly, the generalized operator-function E(t) =
sinh

√
At√

A
θ(t) is fundamental operator-function on the class K ′

+(E) for the operator ( d2

dt2
−A), if A is bounded.

Proposition 3.1 If E(t) is the fundamental operator-function of the differential operator L( d
dt

) on the class K ′
+(E),

then for ∀g(t) ∈ K ′
+(E) the generalized function u(t) = E(t)∗g(t) ∈ K ′

+(E) on basic space K(E∗) satisfies convolution
equation

L(δ(t)) ∗ u(t) = g(t).

3.2 Fundamental operator-function of singular differential operators

It is valid the following

Theorem 3.1 Suppose that condition 1 is satisfied. Then the differential operator (B d2

dt2
− A) on the class K ′

+(E2)
has the fundamental operator-function of the form

E2(t) = Γ
sinh(

√
AΓt)√

AΓ
[I −Q]θ(t) −

n
∑

i=1

[

pi−1
∑

k=0

{
pi−k
∑

j=1

< ·, ψ(j)
i > ϕ

(pi−k+1−j)
i }δ(2k)(t)],

and the operator (B d
dt

−A) on the class K ′
+(E2) has the fundamental operator-function of the form

E1(t) = ΓeAΓt[I −Q]θ(t) −
n

∑

i=1

[

pi−1
∑

k=0

{
pi−k
∑

j=1

< ·, ψ(j)
i > ϕ

(pi−k+1−j)
i }δ(k)(t)].

As the implication of theorem 3.1 and proposition 3.1 we obtain

Theorem 3.2 Let the conditions of theorem 3.1 be satisfied and the function f(t) ∈ C(t ≥ 0) accepts values in E2.

Then the Cauchy problem
Bẋ = Ax+ f(t), x(0) = x0

has a generalized solution of the class K ′
+(E1) of the form

x1 = E1(t) ∗ (f(t)θ(t) +Bx0δ(t)),

the Cauchy problem
Bẍ = Ax+ f(t), x(0) = x0, ẋ(0) = x1

has a generalized solution of the class K ′
+(E1) of the form

x2 = E2(t) ∗ (f(t)θ(t) +Bx1δ(t) +Bx0δ
′(t)).
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Remark 3.3 Direct computations can show that the generalized solutions x1(t) and x2(t) coincide with those con-
structed in [?] by another method. If additionally we require that the singular components of the generalized solutions
x1(t), x2(t), are equal to zero, then firstly, generalized solutions x1(t), x2(t), coincide with continuous (classical)
solutions, and, secondly, these additional conditions define a set of the initial conditions and right-hand sides f(t), for
which such problems are solvable in the classes of functions C1(t ≥ 0), C2(t ≥ 0) accordingly.

Remark 3.4 If R(B) 6= R(B), but A is a bounded operator, then all results of theorems 3.1 and 3.2 are valid if we

replace in E1(t) ΓeAΓt on eΓAtΓ, in E2(t) Γ sinh(
√

AΓt)√
AΓ

on sinh(
√

ΓAt)√
ΓA

Γ.
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