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1. Introduction.

Electron1 transport in high energy devices such as vacuum diodes exhibits many non-
linear phenomena due to the extremely high applied voltages. One of these effects is the
saturation of the current due to the self-consistent electric and magnetic field. Langmuir and
Compton [1] have investigated this phenomenon the first and established explicit formulae
for the saturation current in the plane diode case, and approximate ones in the cylindrical
and spherical diode cases. They assumed that the current saturates at a maximal value
determined by the condition that the electric field vanishes at the emission cathode. This
condition is referred to as the Child-Langmuir condition and the diode is said to operate
under a space charge limited or a Child-Langmuir regime.

Investigation of mathematic models of magnetic insulation has been started by P.Degond,
N.Ben Abdallah and F.Mehats in 1995 year. In 1996 P.Degond has put to the author of this
Appendix the problem on existence of solutions of limit system (I) and its generalization to
the problem with free boundary.

1This work is supported by Grant INTAS: 2000-15
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The effect of magnetic insulation consists in that the electrons emitted from cathode
cannot reach the anode due to the extremely high applied electric and magnetic field; they
are reflected by the magnetic forces back to the cathode. Thus there is electronic layer outside
of which electromagnetic field is equal to zero (see Longmuir and Compton [1]). Here two
basic regimes are possible: the first, when electrons reach the anode − ”noninsulated” diode
and the second one, when electrons rotate back to the cathode − ”insulated” diode. The
regime of ”noninsulated” diode is described by the following nonlinear two-point boundary
value problem

d2ϕ

dx2
= jx

1 + ϕ(x)√
(1 + ϕ(x))2 − 1 − a(x)2

�
= F (ϕ, a); ϕ(0) = 0, ϕ(1) = ϕL,

(I)

d2a

dx2
= jx

a(x)√
(1 + ϕ(x))2 − 1 − a(x)2

�
= G(ϕ, a); a(0) = 0, a(1) = aL,

where jx > 0, x ∈ [0, 1]; ϕ is the potential of electric field and the potential of magnetic field
is a.

Our main goal consists in search of positive solutions of system (I) that is ϕ > 0, a > 0
and their dependences upon parameter jx. Here there are some interesting questions about
solvability of this problem, because the system (I) is singular in zero for ϕ = 0 andf in this
connection, we can not say about properties of monotonicity of right parts on the interval
ϕ ∈ [0,∞) and, hence, about Lipschitz condition. The problem (I) has no a property of
quasimonotonicity in cone. Thus a standard upper and lower solution method, developed
for the systems of semilinear elliptic equations in partially ordered Banach space (see Amann
[3]), does not work. In spite of this fact, we show the existence of lower and upper solutions
of problem (I) without conditions of local Lipschitz continuity and quasimonotonicity using
sufficiently simple technics. To this purpose, we modify the McKenna and Walter [1] theorem
of existence of lower and upper solutions for arbitrary elliptic systems

�u + f(x, u) = 0 Ω, u = 0 ∂Ω, (1.1)

where u = (u1, . . . , un), f = (f1, . . . , fn) are n − vectors; Ω is an open bounded subset of
RM with smooth boundary ∂Ω, and f(x, u) is uniformly Hö lder continuous (with exponent
α) in x and Lipschitz continuous in u.

The outline of the Appendix is as follows. In Subsection 2, we give the statement and the
derivation of system (I). The model that we shall consider is the 1.5 dimensional stationary
relativistic Vlasov-Maxwell(VM) system. Introducing a small parameter ε > 0 and the spacial
dimensionless variables, into the VM system, we obtain the singular perturbation problem.
Next, using some invariants of the electron motion in the limit ε → 0, give system (I).

In Section 3 we will prove Theorem 3.1 and Propositions 3.1, 3.2 on the existence of
semitrivial solutions of problem (I) by upper and lower solution method. The estimations
to the value of electrostatic potential on the anode ϕL and the current jx are obtained. In
Section 4 we formulate the principal Theorem 4.1 on the existence of positive solutions of
problem (I) and the estimation to the value of magnetic field on the anode aL is given.
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We note that system (I) was studied in Abdallah, Degond and Mehats [2] by a shooting
method with β = a′(0) and jx as shooting parameters. The strategy is: given the values of
β and jx, solve (I) with the Cauchy conditions ϕ(0) = 0, a(0) = 0, ϕ′(0) = 0, a′(0) = β, and
then adjust the values in order to fulfill the conditions ϕ(1) = ϕL and a(1) = aL.

2. Setting of the problem and derivation of system (I).

We consider a plane diode consisting of two perfectly conducting electrodes, a cathode
(X = 0) and anode (X = L) supposed to be infinite planes, parallel to (Y, Z) (Fig. 1).
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Figure 1: circuit of diode

The electrons, with charge −e and mass m, are emitted at the cathode and submitted
to an applied electromagnetic field

Eext = EextX, Bext = BextZ

such that Eext ≤ 0 and Bext ≥ 0.
We shall assume that the electron distribution function F does not depend on Y and

that the flow is stationary and collisionless. The system is then described by the so called
1.5 dimensional VM model 1.5

VX
∂F

∂X
+ e

(
dΦ

dX
− VY

dA

dX

)
∂F

∂PX

+ eVX
dA

dX

∂F

∂PY

= 0, (2.1)

d2Φ

dX2
=

e

ε0
N(X), X ∈ (0, L), (2.2)

d2A

dX2
= −µ0JY (X), X ∈ (0, L) (2.3)

subject to the following boundary conditions:

F (0, PX, PY ) = G(PX , PY ), PX > 0, (2.4)

F (L, PX , PY ) = 0, PX < 0, (2.5)
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Φ(0) = 0, Φ(L) = ΦL = −LEext, (2.6)

A(0) = 0, A(L) = AL = LBext, (2.7)

where formulas (2.4) and (2.5) describe the injection profile at the cathode and at the anode,
respectively, E = −dΦ/dX, B = −dA/dX. The relationship between momentum an velocity
is then given by the relativistic relations

V(P) =
P

γm
, γ =

√
1 +

|P|2
m2c2

,

V = (VX , VY ), P = (PX , PY ), |P|2 = P 2
X + P 2

Y ,

or
V(P) = ∇PE(P),

where E is the relativistic kinetic energy and c is the speed of light.
In system (2.1)-(2.3), the macroscopic quantities, namely the particle density N ; X and

Y components of the current density JX , JY , are respectively given by the following formulas

N(X) =
∫

R2
F (X, PX , PY )dPXdPY , (2.8)

JX = −e
∫

R2
VX(P)F (X, PX , PY )dPXdPY , (2.9)

JY (X) = −e
∫

R2
VY (P)F (X, PX, PY )dPXdPY . (2.10)

Here, ε0 and µ0 are respectively the vacuum permittivity and permeability.
The 1.5 model describes two principal regimes. For a strong applied magnetic field ,

electrons do not reach the anode and come back to the cathode leading to a vanishing JX

component of current density; our model is fully rigorous in this case. When the applied
magnetic field is not strong enough to insulate the diode, JX does not vanish and our model
can be viewed as an approximate of the Maxwell equations.

Similarly to (2.8)-(2.10), we define the moments associated with the incoming particle
distribution function by

NG =
∫

R2
+

G(PX , PY )dPXdPY , (2.11)

JG
X = −e

∫
R2

+

VX(P)G(PX , PY )dPXdPY , (2.12)

JG
Y = −e

∫
R2

+

VY (P)G(PX, PY )dPXdPY , (2.13)

TG =
∫

R2
+

E(P)G(PX , PY )dPXdPY , (2.14)

where R2
+ = {(PX , PY ) ∈ R2, PX > 0}, see Fig. 1 and the thermal emission velocity is

V G =
√

T G

mNG . The quantities (2.11)-(2.14), respectively define the incoming particle density,
X and Y components of the incoming current density and incoming particle kinetic energy.
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In order to get a better insight in the behaviour of the diode, we write the model (2.1)-
(2.7) in dimensionless variables. Following of Degond and Raviart [6, 7], we introduce the
following units respectively for position, velocity, momentum, electrostatic potential, vector
potential, particle density, current and distribution function:

X̄ = L, V̄ = c, P̄ = mc, Ē = mc2, Φ̄ =
mc2

e
,

Ā =
mc

e
, N̄ =

ε0Φ̄

xX̄2
, J̄ = −ecN̄ , F̄ =

N̄

P̄ 2

and the corresponding dimensionless variables

x = X/X̄, p =
P

P̄
= (px, py),v = (vx, vy) =

V

V̄
= p/

√
1 + p2,

Ξ = E/Ē =
√

1 + p̄2 − 1, ϕ = Φ/Φ̄, a = A/Ā, n = N/N̄,

j = J/J̄, f = F/F̄ .

Let the diode is controlled in the Child-Langmuir regime. In such a situation, the thermal
velocity VG is much smaller than the typical drift velocity supposed to be of the order of the
speed of light c. Letting ε = VG

c
, we shall assume that

f(0, px, py) = gε(px, py) =
1

ε3
g(

px

ε
,
py

ε
), px > 0,

where g is a given profile. The dimensionless system reads

vx
∂f ε

∂x
+
(

dϕε

dx
− vy

daε

dx

)
∂f ε

∂px

+ vx
daε

dx

∂f ε

∂py

= 0, (2.15)

(x, px, py) ∈ (0, 1) × R2,

d2ϕε

dx2
= nε(x), x ∈ (0, 1), (2.16)

d2aε

dx2
= jε

y(x), x ∈ (0, 1), (2.17)

nε(x) =
∫

R2
+

f ε(x, px, py)dpxdpy, (2.18)

jε
y(x) =

∫
R2

+

vyf
ε(x, px, py)dpxdpy =

∫
R2

+

py√
1 + |p|2

f ε(x, px, py)dpxdpy, (2.19)

f ε(0, px, py) = gε(px, py) =
1

ε3
g(

px

ε
,
py

ε
), px > 0, (2.20)

f ε(1, px, py) = 0, px < 0, (2.21)

ϕε(0) = 0, ϕε(1) = ϕL, (2.22)
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aε(0) = 0, aε(1) = aL. (2.23)

To derive the limit model (I) at ε → 0, we consider the various invarians of the problem.
The following two quantities are constants of motion

W ε(x, p) = Ξ(p) − ϕε(x) − the electron energy, (2.24)

Pε
y(x, p) = py − aε(x) − the canonical momentum, (2.25)

which means that on each electron trajectory (in the phase space), the above quantities are
constant. Let us denote f , n, a, j, ϕ . . . the limit as ε tends to zero f ε, nε, . . .. Since, in
the limit ε = 0, electrons are injected with zero velocity, it is readily seen that the electron
energy W and canonical momentum Py simultaneously vanish. Consequently,

py(x) = a(x),

(px(x))2 = (1 + ϕ(x))2 − 1 − (a(x))2

and the following identities hold:

vx(x) =
px(x)√

1 + p2(x)
=

px(x)

1 + ϕ(x)
,

vy(x) =
vy(x)√

1 + p2(x)
=

a(x)

1 + ϕ(x)
.

Let us now define the effective potential by

Θ(x) = (1 + ϕ(x))2 − 1 − (a(x))2. (2.26)

Electrons do not enter the diode unless the effective potential Θ is nonnegative in the vicinity
of the cathode. Therefore, we always have Θ′(0) ≥ 0. Let ΘL be the value of Θ at the anode

ΘL = (1 + ϕL)2 − 1 − a2
L. (2.27)

If ΘL < 0, electrons cannot reach the anode x = 1; they are reflected by the magnetic forces
back to the cathode and the diode is said to be magnetically insulated. If Θ is nonnegative,
then all electrons are reached the anode and the diode is said to be noninsulated.

The aim of this chapter is to give an analysis of noninsulated regime. We assume that

∀x ∈ (0, 1], Θ(x) > 0, Θ(1) − Θ(0) = ΘL > 0.

The last one denotes, a phase portrait (x, px) of electron trajectory has the form
Since no electron is injected at the anode, j−x vanishes. Hence

jx = j+
x =

∫
R2

+

vxf(x, px, py)dpxdpy

and the distribution function is that of a monokinetic beam issued from the cathode x = 0
with vanishing initial velocity

f(x,P) = n(x)δ
(
px −

√
Θ(x)

)
δ(py − a(x)).

6



�

�

0 x

Px

1

1

anodecathode
�

Figure 2:

Therefore

n(x) =
jx

vx(x)
= jx

1 + ϕ(x)√
Θ(x)

, jy(x) = n(x)vy(x) = jx
a(x)√
Θ(x)

.

Inserting these expressions into Poisson’s and Ampere’s equations (2.2), (2.3) gives

d2ϕ

dx2
(x) = jx

1 + ϕ(x)√
(1 + ϕ(x))2 − 1 − (a(x))2

, ϕ(0) = 0, ϕ(1) = ϕL,

(I)

d2a

dx2
(x) = jx

a(x)√
(1 + ϕ(x))2 − 1 − (a(x))2

, a(0) = 0, a(1) = aL.

In system (I) the unknowns are the electrostatic potential ϕ, the magnetic potential a and
the current jx (which does not depend on x).

3. Existence of semitrivial solutions of problem (I).

Let us introduce the definition of cone in a Banach space X.

Definition 3.1: Let X be a Banach space. A nonempty convex closed set P ⊂ X is
called a cone, if it satisfies the conditions:
(i) x ∈ P , λ ≥ 0 implies λx ∈ P ;
(ii) x ∈ P , −x ∈ P implies x = O, where O denotes zero element of X. Here ≤ is the order
in X induced by P , i.e., x ≤ y if and only if y − x is an element of P .

We will denote [x, y] the closed order interval between x and y, i.e.,

[x, y] = {z ∈ X : x ≤ z ≤ y}. (3.1)

We will also assume that the cone P is normal in X, i.e., order intervals are norm bounded.

In X

X ≡ {(u, v) : u, v ∈ C1(Ω̄), u = v = 0}
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we introduce the norm |U |X = |u|C1 + |v|C1, and the norm |U |X = |u|∞ + |v|∞ in C, where
U = (u, v). Here a cone P is given by

P = {(u, v) ∈ X : u ≥ 0, v ≥ 0 for all x ∈ Ω}. (3.2)

So, if u �= 0, v �= 0 belong to P , then −u,−v does not belong. We will work with classical
spaces on the intervals Ī = [a, b], Î =]a, b], I = (a, b):
C(Ī) with norm ‖ u ‖∞= max{|u(x)| : x ∈ Ī};
C1(Ī) =‖ u ‖∞ + ‖ u′ ‖∞;
Cloc(I), which contains all functions that are locally absolutely continuous in I. We introduce
a space Cloc(I) because the problem (I) is singular for ϕ = 0. The order ≤ in cone P is
understood in the weak sense, i.e., y is increasing if a ≤ b implies y(a) ≤ y(b) and y is
decreasing if a ≤ b implies y(a) ≥ y(b).

Theorem 3.1: (Walter [4]) (comparison principle in cone) Let y ∈ C(Ī)
⋂

Cloc(I). The
function f is defined on I × R. Let f(x, y) is increasing in y function, then

v′′ − f(x, v) ≥ w′′ − f(x, w) .. I, (3.3)

v(a) ≤ w(a), v(b) ≤ w(b)

implies
v ≤ w on Ī.

Remark 3.1: Let f(x, y) is decreasing, then Theorem 3.1 remains without changes, if both
parts of (3.3) multiply onto -1.

For the convenience of defining an ordering relation in cone P , we make a transformation
for the problem (I). Let F (ϕ, a) and G(ϕ, a) be defined by (I). Then throuth the transfor-
mation ϕ = −u the problem (I) is reduced to the form

−d2u

dx2
= jx

1 − u√
(1 − u)2 − 1 − a2

�
= F̃ (jx, u, a), u(0) = 0, u(1) = ϕL,

(II)

d2a

dx2
= jx

a√
(1 − u)2 − 1 − a2

�
= G̃(jx, u, a), a(0) = 0, a(1) = aL.

We note that all solutions of the problem (I), as well the problem (II), are symmetric with
respect to the transformation of sign for the magnetic potential a : (ϕ, a) = (ϕ,−a) or
the same (u, a) = (u,−a). Thus we must search only positive solutions ϕ > 0, a > 0 in
cone P or only negative ones: ϕ < 0, a < 0. Thanks to the symmetry of problem it is
equivalently and does not yields the extension of the types of sign-defined solutions of the
problem (I) (respect. (II)). Once more, we note that introduction of negative electrostatic
potential in problem (II) is connected with more convenient relation between order in cone
and positiveness of Green function for operator −u′′ that we use below.

Definition 3.2: A pair [(ϕ0, a0), (ϕ
0, a0)] is called

a) sub-super solution of the problem (I) relative to P , if the following conditions are satisfied


(ϕ0, a0) ∈ Cloc(I)
⋂

C(Ī) × Cloc(I)
⋂

C(Ī),

(ϕ0, a0) ∈ Cloc(I)
⋂

C(Ī) × Cloc(I)
⋂

C(Ī)
; (3.4)
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ϕ
′′
0 − jx

1 + ϕ0√
(1 + ϕ0)2 − 1 − a2

�
= F (ϕ0, a) ≤ 0 in I,

(3.5)

(ϕ0)′′ − jx
1 + ϕ0√

(1 + ϕ0)2 − 1 − a2

�
= F (ϕ0, a) ≥ 0 in I ∀a ∈ [a0, a

0];

a
′′
0 − jx

a0√
(1 + ϕ)2 − 1 − a2

0

�
= G(ϕ, a0) ≤ 0 in I,

(3.6)

(a0)′′ − jx
a0√

(1 + ϕ)2 − 1 − (a0)2

�
= G(ϕ, a0) ≥ 0 in I ∀ϕ ∈ [ϕ0, ϕ

0];

ϕ0 ≤ ϕ0, a0 ≤ a0 in I (3.7)

and on the boundary

ϕ0(0) ≤ 0 ≤ ϕ0(0), ϕ0(1) ≤ ϕL ≤ ϕ0(1),

(3.8)

a0(0) ≤ 0 ≤ a0(0), a0(1) ≤ aL ≤ a0(1);

b) sub-sub solution of the problem (I) relative to P , if a condition (3.4) is satisfied and

ϕ
′′
0 − F (jx, ϕ0, a0) ≤ 0 in I,

(3.9)

a
′′
0 − G(jx, ϕ0, a0) ≤ 0 in I

and on the boundary

ϕ0(0) ≤ 0, ϕ0(1) ≤ ϕL, a0(0) ≤ 0, a0(1) ≤ aL. (3.10)

Remark 3.2: In Definition 3.2 the expressions with square roots we take by modulus
|(1 + ϕ)2 − 1 − a2|.

By analogy with (3.9), (3.10), we may introduce the definition of super-super solution in
cone.

Definition 3.3: The functions Φ(x, xai
, jx), Φ1(x, xϕj

, jx) we shall call a semitrivial
solutions of the problem (I), if Φ(x, xai

, jx) is a solution of the scalar boundary value problem

ϕ′′ = F (jx, ϕ, xai
) = jx

1 + ϕ√
(1 + ϕ)2 − 1 − (xai

)2
, (III)

ϕ(0) = 0, ϕ(1) = ϕL,

and Φ1(x, xϕj
, jx) is a solution of the scalar boundary value problem

a′′ = G(jx, xϕj
, a) = jx

a√
(1 + xϕj

)2 − 1 − a2
, (IV )
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a(0) = 0, a(1) = aL.

Here xai
, i = 1, 2, 3 and xϕj

, j = 1, 2 are respectively, the indicators of semitrivial solutions
Φ(x, xai

, jx), Φ1(x, xϕj
, jx) defined by the following way:

xa1 = 0, if a(x) = 0;
xa2 = a0, if a = a0 be upper solution of the problem (IV);
xa3 = a0, if a = a0 be lower solution of the problem (IV);
xϕ1 = ϕ0, if ϕ = ϕ0 be upper solution of the problem (III);
xϕ2 = ϕ0, if ϕ = ϕ0 be lower solution of the problem (III).

From Definition 3.3, we obtain the following types of scalar boundary value problems for
semitrivial (in sense of Definition 3.3) solutions (I) (resp. (II)):

ϕ′′ = F (ϕ, 0) = jx
1 + ϕ√

(1 + ϕ)2 − 1
, ϕ(0) = 0, ϕ(1) = ϕL. (A1)

ϕ′′ = F (ϕ, a0) = jx
1 + ϕ√

(1 + ϕ)2 − 1 − (a0)2
, ϕ(0) = 0, ϕ(1) = ϕL. (A2)

ϕ′′ = F (ϕ, a0) = jx
1 + ϕ√

(1 + ϕ)2 − 1 − (a0)2
, ϕ(0) = 0, ϕ(1) = ϕL. (A3)

a′′ = G(ϕ0, a) = jx
a√

(1 + ϕ0)2 − 1 − a2
, a(0) = 0, a(1) = aL. (A4)

a′′ = G(ϕ0, a) = jx
a√

(1 + ϕ0)2 − 1 − a2
, a(0) = 0, a(1) = aL. (A5)

We shall find the solutions of problems (A1) − (A3) with condition

ϕ0 < ϕ0,

where ϕ0(xa1), ϕ0(xa2) are respectively, lower and upper solutions of problem (A1). The
solution (ϕ, a) of problem (I) should be belong to the interval

ϕ ∈ Φ(ϕ, 0)
⋂

Φ(ϕ, a0)
⋂

Φ(ϕ, a0),

a ∈ Φ1(ϕ
0, a)

⋂
Φ1(ϕ0, a).

Moreover, the ordering of lower and upper solutions of problems (A1) − (A3) is satisfied

ϕ0(xa1) < ϕ0(xa2) < ϕ0(xa3) < ϕ0(xa2) < ϕ0(xa1).

We shall seek the solution of problems (A4) − (A5) with condition

a0 < a0.

In this case the following ordering of lower and upper solutions of problems (A4) − (A5)

a0(xϕ1) < a0(xϕ2) < a0(xϕ2) < a0(xϕ1).
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is satisfied.
We go over to the direct study of the problem (III) which includes the cases (A1)− (A3).

Let us consider the boundary value problem (III) with

F (x, ϕ) : (0, 1] × (0,∞) → (0,∞). (B1)

In condition (B1) for F (x, ϕ) we dropped index ai, considering a general case of nonlinear
dependence F of x.

We shall assume that F is a Caratheodory function, i.e.,

F (·, s) measurable for all s ∈ R, (B2)

F (x, ·) is continuous a.e. for x ∈]0, 1], (B3)

and the following conditions hold

∫ 1

0
s(1 − s)Fds < ∞. (B4)

∂F/∂ϕ > 0, i.e., F is increasing in ϕ. (B5)

There are γ(x) ∈ L1(]0, 1]) and α ∈ R, 0 < α < 1 such that

|F (x, s)| ≤ γ(x)(1 + |s|−α), ∀(x, s) ∈]0, 1] × R. (B6)

We are intersted in a positive classical solution of equation (III), i.e., ϕ > 0 in P for
x ∈]0, 1] and ϕ ∈ C([0, 1])

⋂
C2(]0, 1]). The problem (III) is singular, therefore, condition

(B1) is not fulfilled on the interval ϕ ∈ (0,∞) and in this connection, the well-known
theorems (see Amann [1]) on existence of lower and upper solution in cone P does not work.
It follows from Theorem 3.1, since F in (III) is increasing in ϕ, then ϕ < w for x ∈]0, 1],
where ϕ and w satisfy the differential inequality (3.3).

Theorem 3.2: Assume conditions (B2) − (B6). Then there exists a positive solution
ϕ ∈ C([0, 1])

⋂
C2(]0, 1]) of the boundary value problem (III).

Proof: Let ϕ > 0 is a solution of problem (III). By Theorem 3.1 ϕ < w for x ∈]0, 1].
Take ε > 0 and consider equation

ϕ
′′
ε = jx

1 + ϕε + ε√
(1 + ϕε + ε)2 − 1 − (xai

)2

�
= Fε(jx, ϕε + ε, xai

).

(3.11)

ϕε(0) = 0, ϕε(1) = ϕL.

Let w and ϕ are upper and lower solutions of equation (3.11) (below, in Proposition 3.1
is shown that such solutions really exist). Hence the theorem on monotone iterations (see
Heikkila [1]) gives an existence of classical solution ϕε of equation (3.11), which satisfies
w > ϕε > ϕ for x ∈]0, 1] and is bounded in C. Thus Fε(jx, ϕε + ε, xai

) is bounded and
there exists uniform limit limε→0 ϕε = ϕ. It follows from the last, if 0 < η < 1

2
, then

limε→0 Fε(jx, ϕε + ε, xai
) = F (jx, ϕ, xai

) uniformly on [η, 1 − η] and ϕ > 0 for x ∈ [η, 1 − η].

11



Since ϕε is uniformly converged on [0, 1], then it implies existence limε→0 ϕ
′
ε(η). Therefore

there exists limε→0 ϕ
′′
ε (x) on the compact subspaces (0,1) and {ϕ′

ε} is uniformly converged
on (0,1) to a differentiable function ϕ

′
on [η, 1 − η]. From the last it follows that ϕ is twice

differentiable on [η, 1 − η], ϕ
′′

= F (jx, ϕ, xai
), x ∈ [η, 1 − η] and u ∈ C([0, 1])

⋂
C2(]0, 1]) is

a positive solution of the problem (III).
The Theorem 3.2 is proved.
Remark 3.3: Delicate moment in the proof of Theorem 3.2 is connected with finding

of a lower ϕ and an upper w solutions for perturbed problem (3.11). As a lower solution we
can take solution of equation (A1) (semitrivial solution ϕ), then an upper solution will be,
for example, maximal solution of equation (A1).

Application of monotone iteration techniques to the equation (III) gives an existence of
maximal solution ϕ̄(x, jx) such that

ϕ(x, xj) ≤ ϕ̄(x, xj) < w(x) for x ∈]0, 1]. (3.12)

Proposition 3.1: Let 0 < c ≤ jx ≤ jmax
x . Then equation (A1)

ϕ
′′

= F (jx, ϕ, 0) = jx
1 + ϕ√
ϕ(2 + ϕ)

,

ϕ(0) = 0, ϕ(1) = ϕL

has a lower positive solution
u0 = δ2x4/3, (3.13)

if
4δ3 ≥ 9jmax

x (1 + δ2)/
√

2 + δ2 (3.14)

and an upper positive solution

u0 = α + βx (α, β > 0) (3.15)

with
ϕL ≥ δ2, (3.16)

where δ is defined from (3.14).

Remark 3.4:. Square root is taking as
√
|ϕ(2 + ϕ)| in the case of negative solutions.

Here u0 = −εx is an upper solution, and u0 = −2 + ε is a lower solution (0 < ε < 1). Hence
equation (A1) has the negative solution only for 0 < ϕL < −2 because F (x,−2) = −∞.

It follows from (3.14), (3.16) that a value of current is limited by the value of electrostatic
potential on the anode ϕL

jx ≤ jmax
x ≤ F(ϕL). (3.17)

Analysis of lower and upper solutions (3.13), (3.15) exhibits that for δ2 = ϕL > 2 and
α = β ≤ 1 interval in x between lower and upper solutions is decreased, and for the large
values of the potential ϕL diode makes on regime ϕLx4/3.

Proposition 3.2: Let 0 < c ≤ jx ≤ jmax
x . Then equation (A4)

a
′′

= G(jx, ϕ
0, a) = jx

a√
(1 + ϕ0)2 − 1 − a2

, a(0) = 0, a(1) = aL

12



with a lower solution a0 = 0 and an upper solution a0 = u0 > 0, conditions (3.14), (3.16)
has an unique solution a(x, jx, c), which is positive, moreover

0 ≤ aL ≤
√

ϕ0(2 + ϕ). (3.18)

Proof: The positive solution of problem (A4) is concave and be found as a solution of
initial problem with a(0) = 0, a′(0) = c, where c is a shooting parameter. The solution
a = a(x, jx, c) is unique and strongly decreasing in c because the right part of differential
equation is decreasing in a. The least nonnegative solution is f(x, jx, 0) = 0 and for 0 ≤
aL ≤

√
ϕ0

L(2 + ϕ0
L) there exists only one solution and no positive solutions for other values

aL.
Remark 3.5: The problem (A5) is considered by analogy with problem (A4), change of

an upper solution a0 = u0 to a lower a0 = u0 one and 0 ≤ aL ≤
√

ϕ0L(2 + ϕ0L).

Following to the definition 3.2 and Propositions 3.1, 3.2, solutions of the problems (III),
(IV) we can write in the form (Fig. 3):

�

�

0 x

ϕ, a

1

ϕ0

a0

a0

ϕ0

Figure 3: location of lower (ϕ0, a0) and upper (ϕ0, a0) solutions

lower-lower (ϕ0, a0)):
ϕ0 = u0 = δ2x4/3, a0 = 0, ϕL ≥ δ2;

upper-lower (ϕ0, a0):

ϕ0 = u0 = α + βx, a0 = 0, δ2 ≤ ϕL ≤ C, C = max{α, β};
lower-upper (ϕ0, a

0):

ϕ0 = u0 = δ2x4/3, a0 = u0, ϕL ≥ δ2, aL ≤
√

(u0(2 + u0);

upper-upper (ϕ0, a0):

ϕ0 = u0 = α + βx, a0 = u0, ϕL ≤ C, aL ≤ a0 ≤ u0.

13



4. Existence of solutions of system (I).

In the previous section we demonstrated the existence of semitrivial solutions of system
(I). Here we show the existence of solutions for the complete system (I) using the following
McKenna-Walter theorem.

Theorem 4.1: (see McKenna, Walter [5]) Assume conditions (B1) − (B6). We assume
that there exists the ordered pair (u, ū) − lower and upper solutions, i.e.,

u, ū ∈ Cloc((0, 1])2
⋂

C([0, 1])2, u ≤ ū ]0, 1]

u(0) ≤ 0 ≤ ū(0), u(1) ≤ uL ≤ ū(1); uL
�
= (ϕL, aL),

∀x ∈]0, 1] : ∀z ∈ R2,

u(x) ≤ z ≤ ū(x), zk = uk(x);

−u
′′
k(x) ≥ hk(x, z) (4.1)

and
∀x ∈]0, 1] : ∀z ∈ R2,

u(x) ≤ z ≤ ū(x), zk = ūk(x) :

−ū
′′
k(x) ≤ hk(x, z) (4.2)

for all k ∈ {1, 2}. Then there exists a solution u ∈ C2((0, 1])2⋂C([0, 1])2 of the problem

−u′′ = h(·, u(·)) ]0, 1]

u(0) = 0, u(1) = uL.

For keeping of ordering of lower and upper solutions in Theorem 4.1 (in cone P ) we write
differential inequalities (4.1), (4.2) in the following form

∀z ∈ [v(x), w(x)], z1 = w1(x) :

±w
′′
1 (x)

(≥)

≤ ±F1(w1(x), z2)

∀z ∈ [v(x), w(x)], z1 = v1(x) :

±v
′′
1 (x)

(≤)

≥ ±F1(v1(x), z2)

∀z ∈ [v(x), w(x)]; z2 = w2(x)

±w
′′
2 (x)

(≥)

≤ ±F2(z1, w2)

∀z ∈ [v(x), w(x)]; z2 = v2(x)

±v
′′
2 (x)

(≤)

≥ ±F2(z1, v2).

Remark 4.1: Change of signs with (+) to (−) in differential inequalities is connected
with adjustment of signs and ordering (≤) of lower (upper) solutions of system (I) in Defi-
nition 2.2 and lower (upper) solutions in Theorem 4.1.
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From the last relations we obtain


w
′′
(x) = F1(w1(x), 0) ≤ F1(w1, z2)

v
′′
1 (x) ≥ sup

z2

F1(v1(x), z2)
, (4.3)




w
′′
2 (x) ≤ F2(z1, w2)

v
′′
2 (x) ≥ sup

z1

F2(z1, v2)
. (4.4)

From inequality v
′′
2 (x) ≥ supz1

F2(z1, v2), we get estimations to the value of magnetic field
on the anode aL

aL ≤ jx

2
≤ jmax

x

2
≤ F(ϕL)

2
(4.5)

taking account of (3.17) and ΘL > 0. Under realization of estimation (4.5) the diode works in
noninsulated regime, moreover, the value aL is limited by value of electrostatic potential on
the anode ϕL with a critical value ϕL = 2. In increasing of magnetic potential aL the diode
transfers in isolated regime that leads to more complicated problem with free boundary.

Thus we have the following main result of this paper.
Theorem 4.2: Assume conditions (B2), (B3), (B6) and inequalities (3.14), (3.17), (4.5).

Then the problem (I) possesses a positive solution in cone P such that


ϕ
′′
0 ≥ jxF (ϕ0, z2), z2 ∈ [0, ϕ0]

(ϕ0)′′ ≤ jxF (ϕ0, z2), z2 ∈ [0, ϕ0]
,




a
′′
0 ≥ G(jx, z1, a0), z1 ∈ [ϕ0, ϕ

0]

(a0)′′ ≤ G(jx, z1, a
0), z1 ∈ [ϕ0, ϕ

0]
,

where ϕ0 = δ2x4/3 is a lower solution of problem (A1), ϕ0 = α + βx (α, β > 0) is an upper
solution of problem (A1) with condition ϕL ≥ δ2; a0 = 0 is a lower solution of problem (A4)

with condition 0 ≤ aL ≤
√

ϕ0(2 + ϕ0).
Theorem 4.2 may be used to the construction of the minimal and maximal solution of

(I) on the basis of monotone-iteration method in Heikkila [8].
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