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The solutions of nonlinear equations can be depended of one or some
free parameters. In this paper it is assumed that a kernel of linearized

operator is nontrivial [1]. Then the presence of free parameters is connected
with properties of range of mapping. If in addition the problem is group-
invariant [10], then all or part of free parameters have a group sense [2-6,

10, 11]. In the branching theory it is necessary to know the domain of free
parameters both for qualitative and asymptotic analysis [1-5], development

of iterative methods [6-8] and in applications [11, 15, 16].

The concept of interlaced equation permits to simplify calculations and

consider a various classes of branching solutions with unique point of view.
The main results in this direction, under the condition of group- invariance,

were developed by eastern contributors [2-5] and western ones [19]. There
is extensive bibliography in [5, 19].

In this paper we analyze the appearance of free parameters in branching

solutions of the general nonlinear equations in Banach spaces. We consider
the sufficient conditions to reduction of number of equations in branching

system [1]. New methods for simplification of branching equations extend-
ing the possibility of effective algorithmizaion of bifurcation analysis are

given. The results of P.2 of this work are obtained collaborate with a
graduate student V.R.Abdullin.

P.1. Let E1, E2 are Banach spaces, Λ be normalized space. We consider

the equation

F (x, λ)
def
= Bx−R(x, λ) = 0 (1)

where B : D ⊂ E1 → E2 be closed Fredholm operator with dense domain
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of definition in E1, λ ∈ Λ, {ϕ1, . . . , ϕn} is a basis in N(B), {ψ1, . . . , ψn} is a
basis in N(B∗); systems {γ1, . . . , γn}, {z1, . . . , zn} are biorthogonal to these

basis. The operator R(x, λ) with values to E2 is defined, continuous and
continuously differentiable by Frechet with respect to x in a neighbourhood

of zero; R(0, 0) = 0, Rx(0, 0) = 0. It is required to construct the solutions
x→ 0 at λ→ 0. We shall seek solutions in the form:

x = (ξ, ϕ) + Γy (2)

where y is an unique small solution of equation

y = R((ξ, ϕ) + Γy, λ), (3)

(ξ, ϕ) =
n

∑

1

ξiϕi,

Γ = (B +
∑n

1 < ·, γi > zi)
−1 is a bounded operator [1]. The parameter

ξ ∈ Rn satisfies the branching equation

< y((ξ, ϕ), λ), ψi >
def
= Li(ξ, λ) = 0, i = 1, . . . , n. (I)

Let us introduce the linear operators S ∈ Z(E1 → E1) and K ∈ Z(E2 →

E2) interlaced by operators B and R(x, λ):

k) BS = KB,

R(Sx, λ) = KR(x, λ) for ∀x, λ ∈ Ω.

The operators S, K can be projectors as in [14] or if the problem G be
invariant, they can be a parametric reprezentations of G-group. We’ll call

the equation (1) (S,K)- interlaced, if the condition k) holds.

We find the form in which the interlacing property k) is inherited by

branching equation (I). Introduce the notations

En
1 = span{ϕ1, . . . , ϕn}, E2n = span{z1, . . . , zn},

En∗
1 = span{γ1, . . . , γn}, E∗

2n = span{ψ1, . . . , ψn}.

Let

(i) Sϕ = T ′ϕ, Kz = D′z, K∗ψ = Mψ, S∗γ = Cγ.
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Here T , D, M , C are matrices [n× n].

We’ll search the solutions as:

x = (ξ, Sϕ) + Γys (4)

where ys = y((ξ, Sϕ), λ) is the unique small solution of equation

y = R((ξ, Sϕ) + Γy, λ). (5)

Parameter ξ satisfies the branching equation

< y((ξ, Sϕ), λ), ψi)
def
= Li(Tξ, λ) = 0, i = 1, . . . , n (II)

by condition i).

Theorem 1. Assume k), i), moreover C = D. Then

L(Tξ, λ) = ML(ξ, λ), (6)

i.e. equation (I) is (T,M)- interlaced.

Proof. Equations (3), (5) possess unique small solutions

y = y((ξ, ϕ), λ) (7)

ys = y((Tξ, ϕ), λ) (8)

by conditions k), i). Substituting (7) into (3) we obtain identity. Having
operated by K on this identity taking account of k), i) and identity SΓ =

ΓK we obtain:

Ky((ξ, ϕ), λ) = R((Tξ, ϕ), λ) + ΓK(y(ξ, ϕ), λ), λ).

Because of uniqueness of small solutions of equation (5)

y((Tξ, ϕ), λ) = Ky((ξ, ϕ), λ). (9)

By projecting identity (9) to E2n we obtain the required equality (6).

Let us introduce instead of k) the following condition

k′) BS = KB, KR(Sx, λ) = R(Sx, λ) for ∀x, λ ∈ Ω.
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Therefore we have the following result:

Theorem 2. Assume k′), i), C = D. Then vector L(Tξ, λ) is fixed one

of matrix µ for ∀ξ, λ.

Proof applies the method of susuccessive approximations.

Remark. In contrast to Loginov and Trenogin Theorem (1975) on
inheritance of the group symmetry by the branching equation, we do not

suppose the parametric continuity of operators S, K in the Theorems 1, 2.

Corollary 1. Let the branching equation (I) is (T,M)-interlaced. Let
rankM = q, {e∗i}

r
i=1 is a basis in N(M ∗), r = n− q,

e∗







1, . . . , r

k1, . . . , kr





 − is a rank minor of matrix ‖ e∗ij ‖i=1,...,r; j=1,...,n .

If here (ξ, λ) satisfies to q equations

Li(Tξ, λ) = 0, i = (1, . . . , n)\(k1, . . . , kr),

then (ξ, λ) satisfies the remaining equations of system (II).

Proof follows from the Theorem 1 and identity

n
∑

s=1

e∗isLs(Tξ, λ) = 0 in which det ‖ e∗is ‖i=1,...,r, s=k1,...,kn
6= 0.

P.2. In this section (T (α),M(α)) be parametric matrices and it is
assumed that

f) L(T (α)ξ, λ) = M(α)L(ξ, λ)

for ∀ξ, λ from the neighborhood of zero and ∀α ∈ G, where G is a domain
of Euclidean space, 0 ∈ G, T (0) = E, detM(α) |∀α∈G 6= 0.

Let c = (c1, . . . , cn) ∈ Rn, Rn = Rn
q

⊕

Rn
n−q, where

Rn
q = {c ∈ Rn : ci = 0, i = nq+1, . . . , nn}.

Rn
n−q = {c ∈ Rn : ci = 0, i = n1, . . . , nq},

{n1, . . . , nn} is a permutation of numbers {1, . . . , n}.
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Definition 1. If ∃αc ∈ G such that M(αc)c ∈ Rn
q , then we shall say, the

trajectory 0(c) pass through subspace Rn
q . If c ∈ Rn

n−q and ∃αc ∈ G such

that M(αc)c /∈ Rn
n−q, then we shall say, the trajectory 0(c) leaves Rn

n−q.

Let us introduce the matrix M0(α) corresponding to minor

M







n1, . . . , nq

nq+1, . . . , nn





 .

By method by contradiction we proof:

Property 1. Let

1) q ≥ n/2 and ∃α0 ∈ G such that rankM0(α0) = n− q or

2) q ≤ n − 2 and at least one row of matrix M(α) contains of linear
independent functions.

Then the trajectory 0(c) corresponding to matrix M(α) leaves Rn
n−q for

any nonzero vector c from Rn
n−q.

Using identity (6) and definition 1 we obtain the following theorem:

Theorem 3. Assume f) and a couple (ξ∗, λ∗) satisfies to q equations

of branching system (II) for ∀α ∈ G, i.e.

Li(T (α)ξ, λ) = 0, i = (n1, . . . , nq). (11)

Let one of the following conditions holds:

1) trajectory of any nonzero vector c from Rn pass through Rn
q ;

2) trajectory of any nonzero vector c from subspace Rn
n−q leaves one.

Then a couple (T (α), ξ∗, λ∗) satisfies the complete branching system (I) for
∀α ∈ G.

Remarks.

a) Theorem 3 reinforces the similar results from [3]. In fact, if S(α)-
group of linear operators acting to En

1 is q- stationary (see definition 1 in

[3]), then condition 1) of the Theorem 3 holds and we obtain the results of
Theorem 1 from [3].

b) If M(α) = T (α), then in the Theorem 3 we can change conditions
1), 2) to equivalent ones:
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1′) ∀ϕ ∈ En
1 ∃αϕ ∈ G such that P2S(αϕ)ϕ = 0;

2′) ∀ϕ ∈ En
1 ∃αϕ ∈ G such that P1S(αϕ)P2ϕ = 0

where

P1 =
q

∑

i=1

< ·, γni
> ϕni

,

P2 =
n

∑

i=q+1

< ·, γni
> ϕni

.

P.3. Some problems and applications.

In the case of interlaced branching equations of potential type [12, 13, 17]

it will be interesting to investigate the phenomenon of domain stratification
of free parameters onto the separate hypersurfaces.

In applications this fact corresponds to decomposition of space of co-
efficients of projection PN(B)x onto the direct sum of subspaces with in-

troduction of coordinate system in every subspace. The rational choice of
coordinate system yields reduction to the number of equations in branching

system. We can show how this choice depends from invariants of potential
of branching system.

Moreover, in some cases all desired solutions of equation (1) read as:

x = (t(α)ξ, µ) + Γy (12)

where t(α) is matrix [n × q], 1 ≤ q ≤ n − 1, µ ∈ Rq. If we take matrix
t(α) as a function of q-invariants of potential of branching equation (I),
then we define the parameter µ from q- branching equations independent

of parameter α.

In series important applications (see, for example, [15], [16]) this fact

jields not only the chance to proof the existence theorems of branching
solutions of nonlinear boundary-value problems, but to construct all such

solutions in the form (12), using degree geometry [18] and our method of
successive approximations from [6-8].
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